Strings 2018, OIST June 25th , 2018

Beyond Symmetry: Topological Lines in 2D

Shu-Heng Shao Institute for Advanced Study

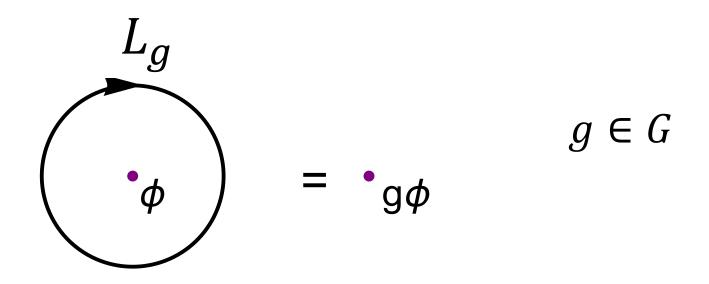
Based on work with Chi-Ming Chang, Ying-Hsuan Lin, Yifan Wang, Xi Yin ArXiv: 1802.04445

The Power of Symmetry

- Global symmetries are powerful in constraining RG flows, correlation functions, and other physical observables in QFT.
 - 't Hooft anomaly matching, Ward identity of correlators, checking dualities...
- More recently, higher form global symmetries have also shown to be useful in constraining the dynamics of QFT [Kapustin-Seiberg, Gaiotto-Kapustin-Seiberg-Willet...].
- Global symmetries can be defined in terms of their charge operators, i.e. topological defects.

Symmetry and Topological Defect

- Continuous global symmetry → Noether charge operator
- More generally, a 0-form global symmetry $g \in G$ (continuous or discrete) is associated to a codimension-1 topological defect L_g .
- Topological defect acts on local operators by symmetry transformation.



0-form Codimension-1 Global Symmetry → Topological Defect

The Power of Non-Symmetry

• There are codimension-1 topological defects that are **NOT** the charge operators of any 0-form global symmetries.

• These non-symmetry topological defects are equally powerful in constraining the dynamics of QFT.

• We don't have to look far for such defects – they are ubiquitous in 2D CFT (e.g. 2D Ising model).

Roadmap

q-form Global Symmetry& Symmetry Codim-(q+1) Defect

 \uparrow

0-form Global Symmetry → Non-Symmetry Codim-1 Defect & Symmetry Codim-1 Defect [Bhardwaj-Tachikawa] Today: (Non-)Symmetry Topological Lines in 2D CFT

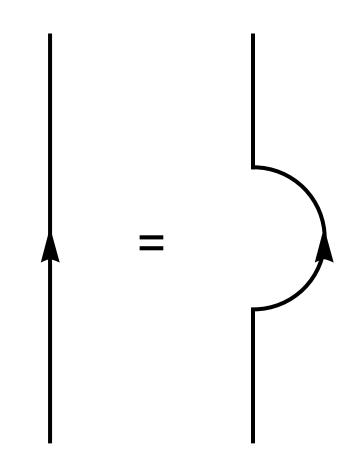
Theorem

• In 2D, if <u>certain non-symmetry topological line</u> is preserved along a RG flow, then the IR theory can NOT be trivially gapped [Chang-Lin-SHS-Wang-Yin].

• Similar in spirit to 't Hooft anomaly matching

1. They are topological

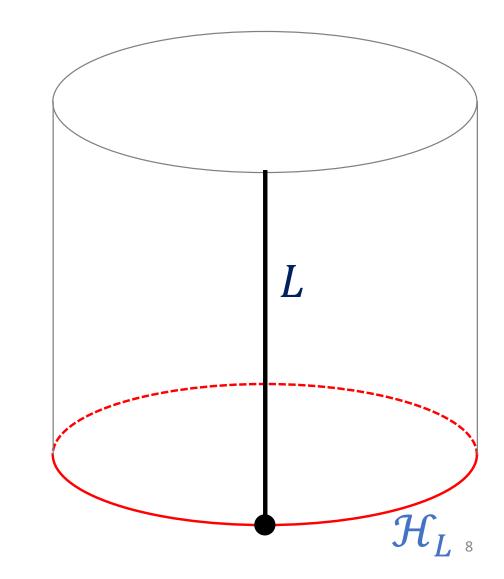
- All physical observables are invariant under continuous deformation of topological lines.
- They commute with **both** Virasoro algebras.



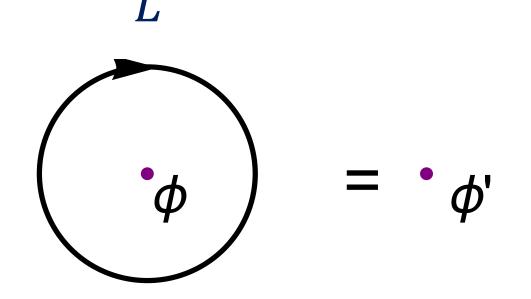
2. Defect Hilbert Space \mathcal{H}_L

• Followed from the topological property, states in \mathcal{H}_L are in representations of **both Virasoro** algebras.

$$\begin{aligned} \mathcal{H}_{L} = \sum_{h,\overline{h}} n_{h,\overline{h}} \, Vir_{h} \otimes \overline{Vir}_{\overline{h}} \\ n_{h,\overline{h}} \in \mathbb{N} \end{aligned}$$

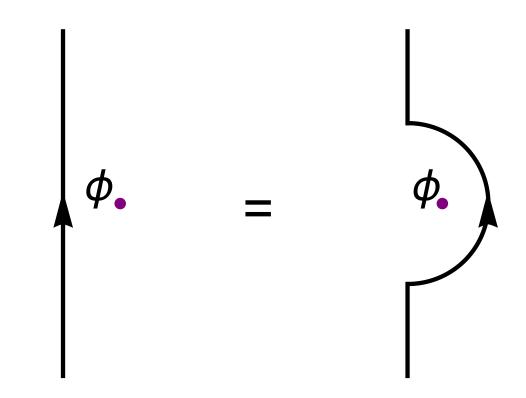


- 3. Action on the Hilbert Space
- Topological line maps a local operator to another of the same conformal weights (h, \overline{h}) .
- The map might **not** be **invertible**, in which case *L* is a **non-symmetry** line.



- In a RG flow, a topological line *L* is said to be preserved by the relevant deformation $\phi(x)$ if they commute with each other.
- That is, the topological line

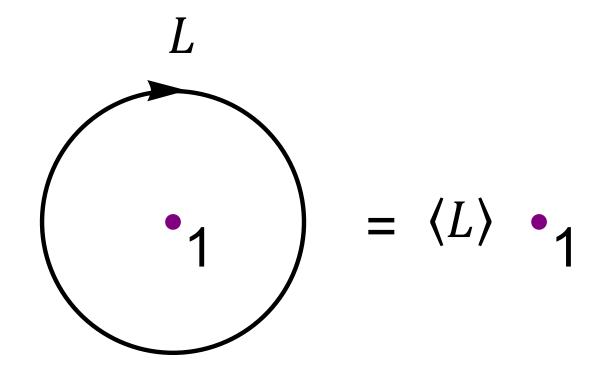
 L doesn't "feel" the insertion of
 φ(x) and remains topological
 after the deformation.



Vacuum Expectation Value $\langle L \rangle$

• Symmetry lines: $\langle L \rangle = 1$

• Non-Symmetry lines: $\langle L \rangle \neq 1$



 $\langle L \rangle$ is RG invariant!

Assumption: The theory has a unique vacuum |1>

Topological Lines in RCFT

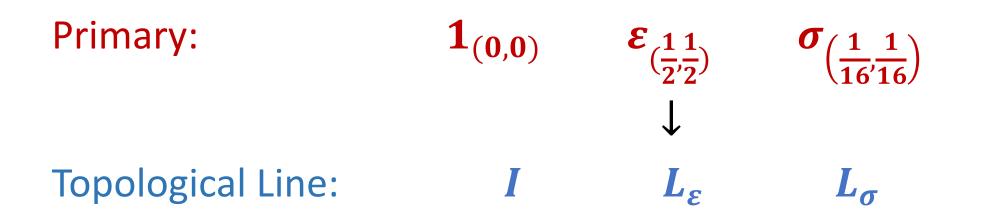
 In a diagonal RCFT, there is a simple class of topological lines, the Verlinde lines, that are in 1-to-1 correspondence with the primary operators and commute with both chiral algebras [Verlinde, Petkova-Zuber, Moore-Seiberg].

 $\begin{array}{ccc} \mathcal{O} & \to & L_{\mathcal{O}} \\ \\ \text{Primary} & & \text{Verlinde Line} \end{array}$

• The action on the local operators is determined by the modular S matrix.

Example: 2D Ising Model

• Three topological lines in the Ising model [Petkova-Zuber,Frohlich-Fuchs-Runkel-Schweigert...], corresponding to the three primary operators

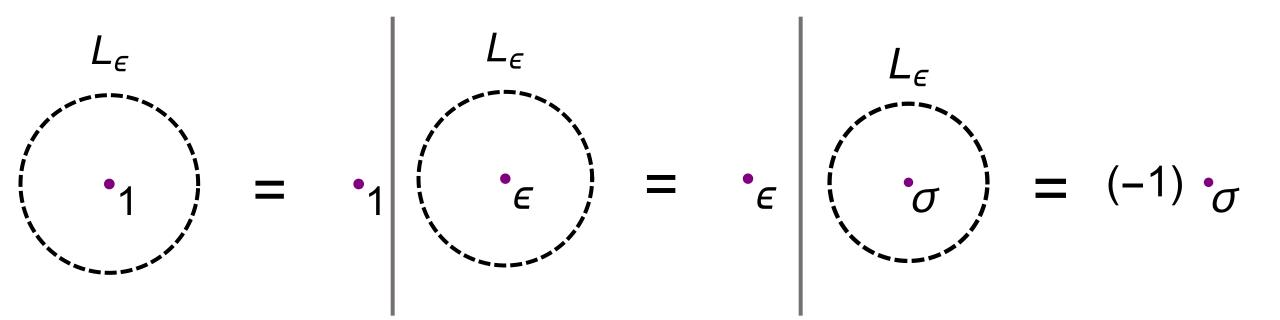


Example: 2D Ising Model

	Symmetry Line?	Vev
Trivial Line I	Yes	1
\mathbb{Z}_2 Line L_{ε}	Yes	1
Duality Defect L_{σ}	No	$\sqrt{2}$

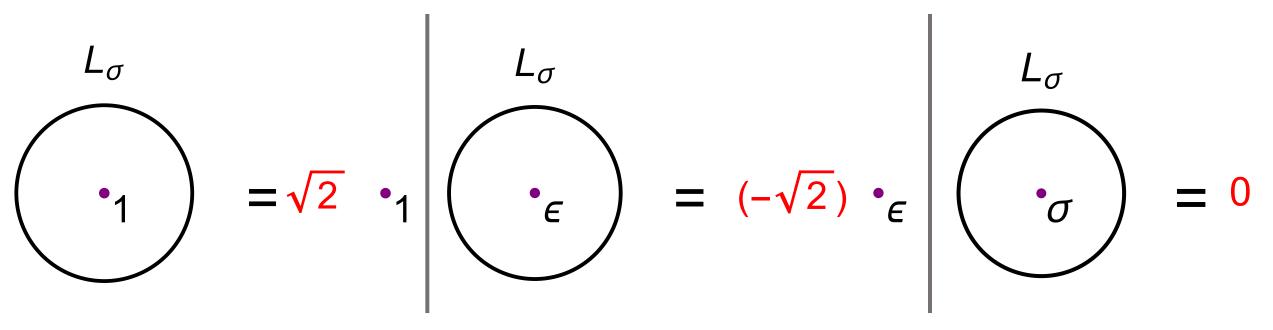
Symmetry Line in the Ising Model

• L_{ε} implements the \mathbb{Z}_2 global symmetry.



Non-Symmetry Line in the Ising Model

• The action of L_{σ} on local operators is **not invertible** \rightarrow Non-Symmetry line [Petkova-Zuber, Frohlich-Fuchs-Runkel-Schweigert...]



Theorem

• In 2D, if a non-symmetry topological line *L* with

 $\langle L \rangle \notin \mathbb{Z}_{\geq 0}$

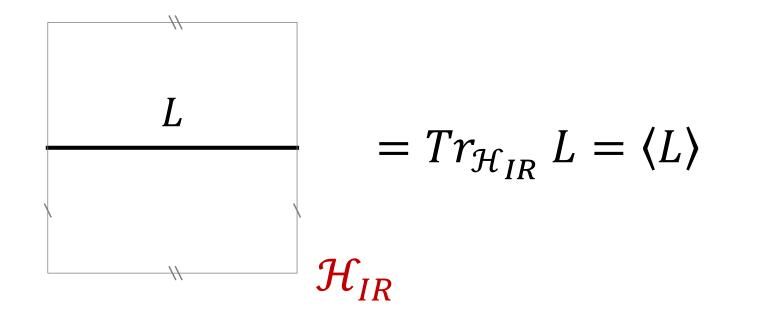
is preserved along a RG flow, then the IR theory can NOT be trivially gapped [Chang-Lin-SHS-Wang-Yin].

Remark:

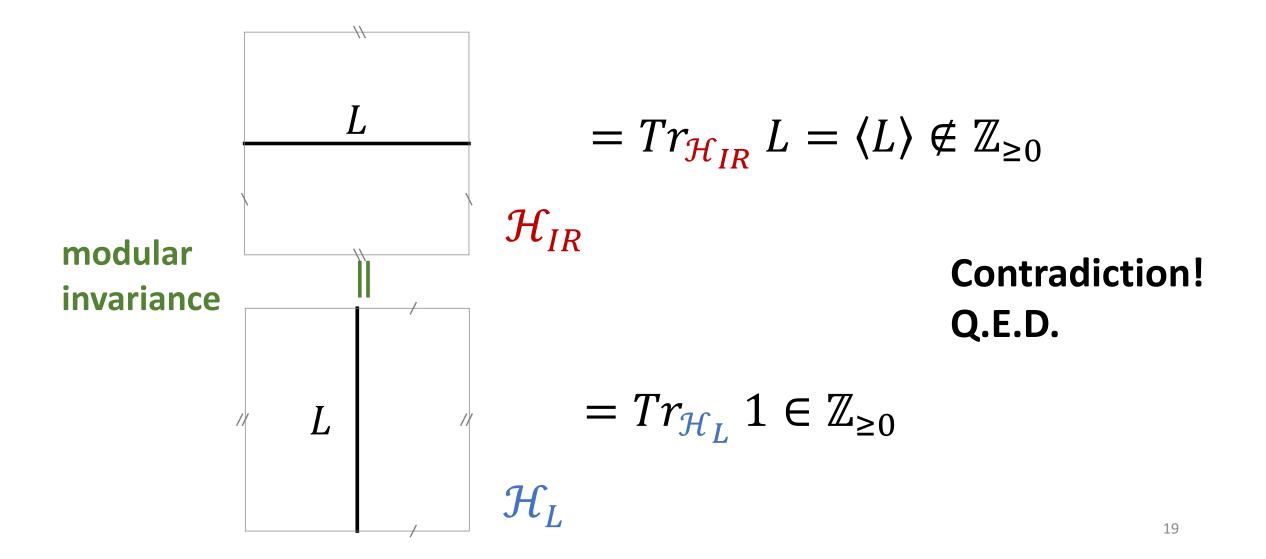
- Degenerate vacua that are **not** consequences of spontaneous symmetry breaking → Spontaneous Non-Symmetry Breaking
- Similar in spirit to 't Hooft anomaly matching: the IR theory has to be nontrivial to match certain degrees of freedom in the UV.

Proof

- Prove by contradiction. Assume that the IR theory is trivially gapped, $\mathcal{H}_{IR}=\{1\}.$
- Next, consider the torus partition function of the IR theory with *L* inserted **horizontally** at a constant time slice.

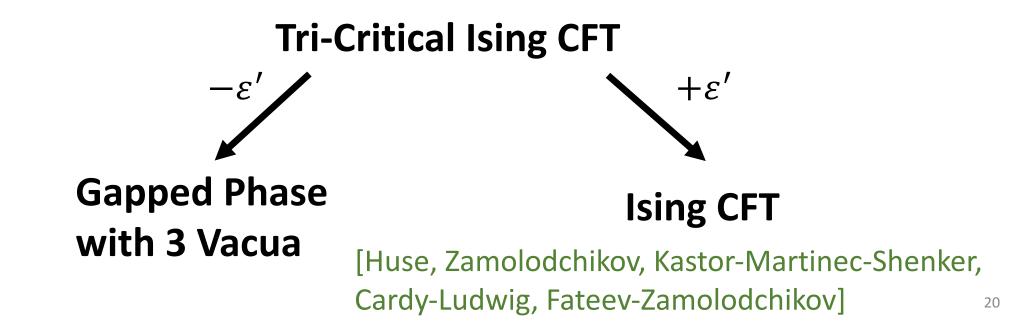


Proof: Modular Invariance



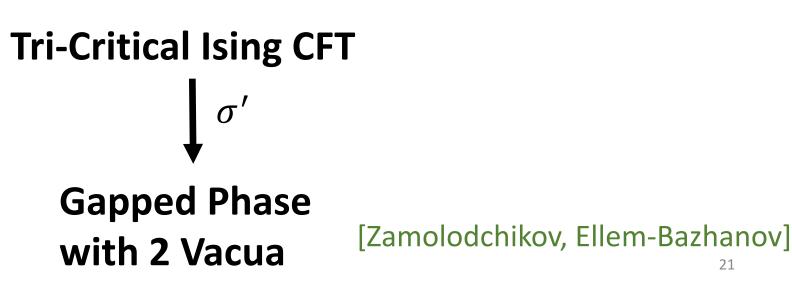
Example: Tri-Critical Ising Model

- Relevant deformation by $\varepsilon'_{(\frac{3}{r},\frac{3}{r})}$ in the $c = \frac{7}{10}$ tri-critical Ising model.
- A non-symmetry topological line of vev $\sqrt{2}$ is preserved along the flow \Rightarrow The IR theory can **NOT** be trivially gapped.



Example: Tri-Critical Ising Model

- Relevant deformation by $\sigma'_{(\frac{7}{16},\frac{7}{16})}$ in the tri-critical Ising model.
- A non-symmetry topological line of vev $\frac{1+\sqrt{5}}{2}$ is preserved along the flow \Rightarrow The IR theory can **NOT** be trivially gapped.
- The \mathbb{Z}_2 global symmetry is **explicitly** broken by σ' , and yet the vacuum is two-fold degenerate \rightarrow Spontaneous Non-Symmetry Breaking



Conclusion

- **The Power of Symmetry**: Global symmetry, especially when it has 't Hooft anomaly, is powerful in constraining RG flows.
- The Power of Non-Symmetry: Non-symmetry topological defects are equally powerful in constraining the dynamics of QFT.
- Certain non-symmetry topological lines imply the IR theory can **NOT** be trivially gapped [Chang-Lin-SHS-Wang-Yin].
- Consideration of topological lines and modular invariance sometimes determines the IR TQFT completely.

Outlook

- Given a set of topological lines,
 - Can they be coupled to a non-degenerate vacuum?
 - If so, how many different ways?
 - More generally, is there a TQFT/CFT that realizes these topological lines?

[Moore-Segal, Bhardwaj-Tachikawa]

- Non-symmetry codimension-one topological defects in higher dimensions.
 - For example, the non-symmetry surface defect in the $3d U(1)_8$ Chern-Simons theory [Fuchs-Runkel-Schweigert, Kapustin-Saulina].

Thank You!