# Boundaries, Interfaces, \& Duality in 3d SCFTs 

Natalie M. Paquette

## California Institute of Technology

Based on 1712.07654 with Tudor Dimofte and Davide Gaiotto \& WIP


## Outline of this talk

Introduction

Boundary Conditions in $3 \mathrm{~d} \mathcal{N}=2$ theories

Dual pairs of boundary conditions

Duality interfaces
$(0,2)$ theories and the 4 -simplex

Other Directions

## Overview

## Introduction

> Boundary Conditions in 3d $\mathcal{N}=2$ theories

Dual pairs of boundary conditions

Duality interfaces
$(0,2)$ theories and the 4 -simplex

Other Directions

## Motivation:

- There is more to QFT than just local operators. Extended operators can distinguish QFTs, phases thereof...
- Organizing dualities: bulk duality $\curvearrowright$ lower dimensional QFTs supported on extended operators
- SUSY + twisting: equalities among local ops/correlation fns in dual theories can admit precise mathematical reformulations leading to interesting (conjectural) equivalences. What about extended operators?


## Goals:

- Can we enrich and extend bulk (supersymmetric) dualities by adding (half-BPS) defects?

Today: 3d $\mathcal{N}=2$ IR (Seiberg-like) dualities, codim-1 objects

- Given such dual pairs, can we understand the resulting equivalences of underlying mathematical objects?


## Boundaries and interfaces

- Interface: domain wall between $\mathcal{T}, \mathcal{T}^{\prime}$
- Boundary: "domain wall" between $\mathcal{T}$, trivial theory These objects compose in interesting ways.



## Overview

## Introduction

Boundary Conditions in $3 \mathrm{~d} \mathcal{N}=2$ theories

Dual pairs of boundary conditions

Duality interfaces
$(0,2)$ theories and the 4 -simplex

Other Directions

Distinct UV Lagrangian theories that flow to common superconformal fixed point

Simple examples to keep in mind:

- SQED $/ \mathrm{XYZ:} U(1)_{0}, \Phi, \tilde{\Phi} \leftrightarrow W=X Y Z$
[Aharony-Hanany-Intriligator-Seiberg-Strassler], [de Boer-Hori-Oz]
- SUSY level-rank: $U(N)_{k+N, k} \leftrightarrow S U(k)_{-k-N}$ [Hsin-Seiberg]

Identify UV boundary conditions $\mathcal{B}, \mathcal{B}^{\vee}$ that flow to the same superconformal $\mathcal{B}_{I R}$

Semiclassical bc's in UV YM-CS + matter theories Study (dual pairs of) 3d $\mathcal{N}=2$ theories on a half-space
$\mathbb{R}^{1,1} \times \mathbb{R}_{\leq 0}$
Half-BPS boundary conditions preserving:

- 2d $\mathcal{N}=(0,2)$ SUSY
- 3d $U(1)_{R}$ (inherited by 2d superalgebra)
$\left\{Q_{+}, \bar{Q}_{+}\right\}=-2 P_{+}$
$\left\{Q_{-}, \bar{Q}_{-}\right\}=2 P_{-}$
$\left\{Q_{+}, \bar{Q}_{-}\right\}=-2 i\left(P_{\perp}-i Z\right)$
$\left\{Q_{-}, \bar{Q}_{+}\right\}=2 i\left(P_{\perp}+i Z\right)$



## BuIlding a boundary

## Step One:

Write 3d $\mathcal{N}=2$ multiplets/Lagrangians in 2d $\mathcal{N}=(0,2)$ language $\longrightarrow$
i.e. the 3d theory is a 2 d theory on $\mathbb{R}^{1,1}$ whose fields are valued in maps $f: \mathbb{R} \rightarrow$ 3d target

- $\Phi_{3 d} \rightarrow \Phi=\phi+\theta^{+} \psi_{+}+\ldots, \Psi=\bar{\psi}_{-}+\theta^{+} f+\ldots$
- $V_{3 d} \rightarrow A=\theta^{+} \bar{\theta}^{+} A_{+}, V_{-}=A_{-}+\theta^{+} \lambda_{-}+\ldots$

$$
S=\sigma+i A_{\perp}-\theta^{+} \bar{\lambda}_{+} \cdots(\text { wZ gauge })
$$

Kinetic terms in $x_{\perp}$ repackaged into $(0,2)$ interactions
Fermionic superpotential, "J-term":
$\int d \theta^{+} \Psi J(\Phi)=\int d \theta^{+} \Psi \partial_{\perp} \Phi \rightarrow f \sim \partial_{\perp} \bar{\phi}$
NB: Also E-terms, $\bar{D}_{+} \Psi=E(\Phi), E . J=0$ for SUSY

## Step Two:

Identify simple reference boundary conditions, then deform:

$$
\left.v\right|_{\partial}=\left.0 \rightarrow\left(v+\frac{\partial S_{\partial}(u)}{\partial u}\right)\right|_{\partial}=0
$$

Shortcut: boundary conditions from boundary action e.o.m's:

$$
\int_{x^{\perp} \leq 0} v \partial_{\perp} u \rightarrow \int_{x^{\perp} \leq 0} v \partial_{\perp} u+S_{\partial}(u)
$$

Reference b.c's:
Neumann: $\left.\Psi\right|_{\partial}=\left.0 \Rightarrow \partial_{\perp} \phi\right|_{\partial}=0,\left.\psi_{-}\right|_{\partial}=0$
Dirichlet: $\left.\Phi\right|_{\partial}=\left.0 \Rightarrow \phi\right|_{\partial}=0,\left.\psi_{+}\right|_{\partial}=0$

See e.g. [Witten] for general discussion of elliptic boundary conditions
Rmk: SUSY ${ }^{c}$ bdy action $\rightarrow \perp$ comp. of supercurrent total deriv. on $\partial$

Step One, cont'd:
Reference b.c's for gauge fields:
Neumann: $\left.F_{\perp \pm}\right|_{\partial}=0,\left.\sigma\right|_{\partial}=0,\left.\lambda_{+}\right|_{\partial}=0$
preserves $G$ gauge symmetry on boundary
(bdy FI term: $\left.\sigma\right|_{\partial}=t^{\partial}$ )
Dirichlet: $A,\left.V_{-}\right|_{\partial}=\left.0 \Rightarrow A_{ \pm}\right|_{\partial}=0, D_{3 d}-\left.\partial_{\perp} \sigma\right|_{\partial}=0,\left.\lambda_{-}\right|_{\partial}=0$ trivializes gauge field at bdy, preserves only $G$ global symmetry

Neumann b.c's require projection onto gauge invariants
Dirichlet b.c's admit boundary monopole operators!

Rmk: Can define bdy conditions defined by singular behavior of bulk fields $\rightarrow \partial$; simple examples in paper

## Step Three:

Couple to extra boundary matter.
Deforms boundary conditions, e.g. Neumann $\left.\rightarrow F_{\perp \pm}\right|_{\partial}=J_{ \pm}^{\partial}$

- Neumann b.c. on chirals in presence of $W_{3 d}(\Phi)$ : $\int_{x^{\perp} \leq 0} d x^{\perp} \sum_{a} E_{a} J^{a}=\left.W(\Phi)\right|_{\partial}$, add $2 d$ Fermis $\Gamma$ s.t.

$$
\sum_{i} E_{\Gamma}^{i} J_{i, \Gamma}=-\left.W(\Phi)\right|_{\partial}
$$

choice of matrix factorization

- Neumann b.c. on gauge fields
gauge anomaly cancellation

Dual pairs? Match 't Hooft anomalies and flavor symmetries!

## Anomaly Interlude

Claim: A 3d fermion with b.c. $\left.\psi_{ \pm}\right|_{\partial}=0$ contributes $\pm \frac{1}{2} \mathbf{f}^{2}$, i.e. half the contribution of a purely 2 d fermion, to the anomaly polynomial.

- Add a real mass term $\operatorname{im} \epsilon^{\alpha \beta} \psi_{\alpha \beta}$
- Flow to IR
- Match UV-IR anomalies

Two effects:

1. Integrating out massive fermion generates bckgd CS term at level $\frac{1}{2} \operatorname{sign}(m)$
2. Normalizable edge modes ( 2 d fermions) may survive at boundary

Net result:
$\left.\psi_{+}\right|_{\partial}=0$ has total IR anomaly

$$
\frac{1}{2} \operatorname{sign}(m)+\left\{\begin{array}{ll}
0 & \text { if } m>0 \\
1 & \text { if } m<0
\end{array}\right\}=\frac{1}{2}
$$

$\left.\psi_{-}\right|_{\partial}=0$ has total IR anomaly

$$
\frac{1}{2} \operatorname{sign}(m)+\left\{\begin{array}{ll}
-1 & \text { if } m>0 \\
0 & \text { if } m<0
\end{array}\right\}=-\frac{1}{2}
$$

NB: detailed (but analogous) computation also for gauginos in paper
Rmk: see also [Moore-Freed] for a geometric avatar

## Half-Index

$$
I_{\mathcal{T}, \mathcal{B}}(x ; q)=\operatorname{Tr}_{O p s_{\mathcal{B}}}(-1)^{R} q^{J+R / 2} x^{e}
$$

Dual pair of b.c's, same half-index (N gauge b.c: [Gadde-Gukov-Putrov):

- Path integral on $H S^{2} \times S^{1}$ localization for N gauge b.c.: [Yoshida-Sugiyama]
- Operatorial count of $\bar{Q}_{+}$-closed boundary local operators, vacuum character of bdy chiral algebra

$$
\begin{aligned}
& I I_{N}(x ; q)=\prod_{n \geq 0} \frac{1}{1-q^{n} x}=: \frac{1}{(x ; q)_{\infty}} \\
& I I_{D}(x ; q)=\prod_{n \geq 0}\left(1-q^{n+1} x^{-1}\right)=\left(q x^{-1} ; q\right)_{\infty}
\end{aligned}
$$

Augment with lines to compute characters of other modules:


## Overview

## Introduction

## Boundary Conditions in $3 \mathrm{~d} \mathcal{N}=2$ theories

Dual pairs of boundary conditions

Duality interfaces
$(0,2)$ theories and the 4 -simplex

Other Directions

## Example: Level-RANK DUALITy

Proposal ( $G$ simple, $k>0$ ):

1. $\mathcal{N}=2 G_{k+h \vee}$ YMCS with $\mathcal{D}$ b.c. flows to chiral $G_{k}$ WZW model coupled to $\operatorname{TFT}\left[G_{k}\right]$.
2. $\mathcal{N}=2 G_{-k-h \vee}$ YMCS with $\mathcal{N}$ b.c. MUST be coupled to $\mathcal{T}_{2 d}$, flows to $\mathcal{T}_{2 d} / G_{k}$ coupled to $\operatorname{TFT}\left[G_{-k}\right]$.
$U(N)_{-k-N,-k} \mathcal{N}+k$ fund. Fermis $\leftrightarrow S U(k)_{k+N} \mathcal{D}$

Half-index of $S U(2)_{1+2}$ with Dirichlet boundary conditions on gauge field

$$
\begin{equation*}
I I_{\mathcal{T}_{1}, \mathcal{D}}=\chi_{0}\left(S U(2)_{1}\right) \tag{1}
\end{equation*}
$$

Half-index of $U(1)_{-2}$ with Neumann bc's +2 fund. Fermis

$$
\begin{equation*}
I_{\mathcal{T}_{2}, \mathcal{N}}=\chi_{0}\left(S U(2)_{1}\right) \tag{2}
\end{equation*}
$$

Each equality is nontrivial.
Here, equality is a manifestation of level-rank dual $b d y$ CFTs!

$$
\begin{gathered}
\frac{2 \text { fermions }}{U(1)_{2}} \simeq S U(2)_{1} \\
\text { More generally: } \frac{\mathrm{k} \text { fermions }}{U(1)_{k}} \simeq S U(k)_{1}
\end{gathered}
$$

## More Examples

3d $\mathcal{N}=2$ dual pairs:

- $U(N),\left(N_{f}, \bar{N}_{f}\right) \leftrightarrow U\left(N_{f}-N\right),\left(N_{f}, \bar{N}_{f}\right)+$ singlets, superpotential [Aharony]
- $U(N)_{k+N} \leftrightarrow U(k)_{-k-N}$ (more SUSY level-rank)
- free chiral $\leftrightarrow U(1)_{1 / 2}+$ chiral $\leftrightarrow U(1)_{-1 / 2}+$ chiral $_{\text {(SUSY }}$
particle-vortex)
- $U(N)_{k+N-\frac{N_{f}+N_{a}}{2}},\left(N_{f}, N_{a}\right) \leftrightarrow U(k)_{-k-N+\frac{N_{f}+N_{a}}{2}},\left(N_{a}, N_{f}\right)^{2}$ [Benini-Closset-Cremonesi]
- SU(2) $)_{1}+$ adjoint $\leftrightarrow$ free chiral ${ }_{\text {[afferis-Yin] }}$

In other examples, many dual pairs we find are the simplest possible choices consistent with:

1. matching boundary flavor symmetries
2. matching boundary 't Hooft anomalies
3. gauge anomaly cancellation
4. superpotential factorization

## Boundary chiral algebras

[Costello-Dimofte-Gaiotto]
Dual bdy conditions support $\simeq$ chiral algebras in $\bar{Q}_{+}$-coh

- $\partial_{\perp}, \partial_{\bar{z}}$ exact, but $\partial_{z}$ is not
- "Holomorphic/topological" twist, see [Aganagic-Costello-McNamara-Vafa]
- Bulk ops $\leftrightarrow$ trivial OPE (except superpotentials $\rightarrow$ quantum corrections)

SQED: $(\mathcal{N N N})+\Gamma$ dual to XYZ: (NDD)
Gauge-invt, $\bar{Q}_{+}$-closed operators with nontrivial OPE?
$(\phi \gamma)(z)(\tilde{\phi} \bar{\gamma})(w) \sim \frac{\phi \tilde{\phi}(z)}{(z-w)}$
$\left(\psi_{Y}\right)(z)\left(\psi_{Z}\right)(w) \sim \frac{X(z)}{(z-w)}$

## Overview

## Introduction

## Boundary Conditions in $3 \mathrm{~d} \mathcal{N}=2$ theories

Dual pairs of boundary conditions

Duality interfaces
$(0,2)$ theories and the 4 -simplex

Other Directions

## Build a duality interface



## Example

$$
U(N)_{-k-N,-k}|\Gamma| S U(k)_{k+N}
$$

Neumann b.c's on either side minimally coupled to $N k$ free Fermi multiplets $\Gamma$ (flavor symmetry from Fermis gauged by coupling to RHS)

$$
\Rightarrow
$$

$\Gamma$ form a bifundamental representation of the gauge groups
Can check that total anomaly cancels for $k, N>0$

## Overview

## Introduction

## Boundary Conditions in $3 \mathrm{~d} \mathcal{N}=2$ theories

Dual pairs of boundary conditions

Duality interfaces
$(0,2)$ theories and the 4 -simplex

Other Directions

## GEOMETRIC INTERPRETATION?

3d-3d correspondence[Dimofte-Gaiotto-Gukov] $6 \mathrm{~d}(2,0)$ thy on 3-mfld $M_{3} \leftrightarrow 3 \mathrm{~d} \mathcal{N}=2$ theory $\mathcal{T}\left[M_{3}\right]$

- IR duality of SQED/XYZ $\leftrightarrow$ change of triangulation

- Geometry: Cobordism between two different triangulations $=4$-simplex
- Field theory: Change of triangulation implemented by $(0,2)$ duality interface


## "DUALITY" OF DUALITY INTERFACES

- Continue this logic:

Different ways of gluing 4-simplex together $\leftrightarrow$ Different sequence of duality interfaces


- Different gluings realize homeomorphic 4-simplices $\therefore$ IR equivalence of sequences/collisions of duality interfaces

Associate bdy chiral algebras to simple 4-manifold operation (+ functional identities from half-indices)
see also [Cecotti-Cordova-Vafa, Nakajima, Vafa-Witten, Gadde-Gukov-Putrov, Dedushenko-Gukov-Putrov,
Nidaiev-Moore, Feigin-Gukov, ...]

## Overview

## Introduction

Boundary Conditions in 3d $\mathcal{N}=2$ theories

Dual pairs of boundary conditions

Duality interfaces
$(0,2)$ theories and the 4 -simplex

Other Directions

## Many interesting adjacent areas!

1. Similar techniques employed for non-SUSY dual pairs
[Gaiotto's Nati-Fest talk, Aitken-Baumgartner-Karch-Robinson, Aitken-Karch-Robinson]
2. Consistency of our proposal $\leftarrow 2$ d dualities, e.g. $(0,2)$ dualities of Gadde-Gukov-Putrov. Generate new $(0,2)$ dualities?
3. Lift dual b.c's to Seiberg-dual surface operators in 4d $\mathcal{N}=1$ theories?
4. Techniques apply to 3d theories with more SUSY, half-index useful to study mathematical counterparts
[Costello-Gaiotto, Aganagic-Okounkov, ...]
5. String/M-theory construction of $3 \mathrm{~d} \mathcal{N}=4$ boundary conditions + applications to geometry, rep theory [wIP w/

Dimofte, Hilburn]

Thank you for your attention!

