QED_3

Nathan Seiberg IAS

Analyzing a Lagrangian QFT

Semiclassical physics, mostly in the UV (reliable, straightforward, but can be subtle)

- Global symmetry and its 't Hooft anomalies
- Weakly coupled limits: flat directions, small parameters, ...

Quantum physics in the IR (mostly conjectural)

- Consistency with the global symmetry (including 't Hooft anomalies) and the various semiclassical limits
- Approximate methods: lattice, bootstrap, ϵ , 1/N, ...
- Integrability
- String constructions

QED₃ [Many references using various methods]

Simple, characteristic example, demonstrating surprising phenomena. Many applications.

- U(1) gauge field a_{μ}
- N_f fermions ψ^i with charges q_i and masses m_i
- A bare Chern-Simons term.
 - Label the theory as $U(1)_k$ with a parameter k.
 - When all the fermions are massive, at low energies a TQFT $U(1)_{k_{low}}$ with $k_{low} = k + \frac{1}{2}\sum_{i} \operatorname{sign}(m_i)q_i^2$. Since $k_{low} \in \mathbb{Z}$,

$$k + \frac{1}{2} \sum_{i} q_i^2 \in \mathbb{Z} \ .$$

Global symmetries

- Charge-conjugation $C: a_{\mu} \rightarrow -a_{\mu}$ (with appropriate action on the fermions)
- $U(1)_0, m = 0$ time-reversal $\mathcal{T}: a_0(t, x) \to a_0(-t, x)$ $a_i(t, x) \to -a_i(-t, x)$

(with appropriate action on the fermions)

• Standard algebra on all the fundamental fields

$$\mathcal{TC} = \mathcal{CT}$$
$$\mathcal{T}^2 = (-1)^F$$
$$(\mathcal{CT})^2 = (-1)^F$$

• For equal charges and masses more symmetries, e.g. $SU(N_f)$.

Global magnetic (topological) symmetry

- $U(1)_M$ symmetry: $j^{\mu} = \frac{1}{2\pi} \epsilon^{\mu\nu\rho} \partial_{\nu} a_{\rho}$.
- The charged operators are monopole operators (like a disorder operator).
 - Remove a point from spacetime and specify boundary conditions around it.
- Massless fermions have zero modes, which can lead to "funny" quantum numbers.

Global magnetic (topological) symmetry

In many applications, the magnetic symmetry is approximate or absent

- In lattice constructions
- When the gauge U(1) is embedded at higher energies in a non-Abelian gauge group
- When the gauge U(1) is emergent
- In the generalization of the gauge $U(1) \cong SO(2)$ to SO(N) with higher N (only a magnetic \mathbb{Z}_2 symmetry).

It is natural to break $U(1)_M$ explicitly by adding a monopole operator to the Lagrangian.

Example: $U(1)_k$, $N_f = 1$ with q = 1

$$k \in \mathbb{Z} + \frac{1}{2}$$

- Since k cannot vanish, \mathcal{T} is violated (parity anomaly).
- All gauge invariant polynomials in the fundamental fields are bosons.
- All gauge invariant monopole operators are bosons.
 - $-U(1)_{\frac{1}{2}}$ simplest monopole operator has spin 0
 - $-U(1)_{\frac{3}{2}}$ simplest monopole operator has spin 1

Example: $U(1)_0$, $N_f = 2$ with q = 1[Cordova, Hsin, NS]

- All gauge invariant polynomials in the fundamental fields are bosons with integer flavor (isospin) *SU*(2).
- All gauge invariant monopole operators are bosons with flavor SU(2) isospin = $\frac{M}{2}$ mod 1.
- On a single monopole $\mathcal{T}^2 = -1$. More generally, $\mathcal{T}^2 = (\mathcal{CT})^2 = (-1)^M$

rather than the standard $\mathcal{T}^2 = (\mathcal{CT})^2 = (-1)^F = +1$. Related, but distinct statements in [Wang, T. Senthil; Metlitski, Fidkowski, Chen, Vishwanath; Witten] and see also Hsin's poster. Examples: $U(1)_0$, $N_f = 1$ with q = 2[Cordova, Hsin, NS]

- All gauge invariant polynomials in the fundamental fields are bosons.
- All gauge invariant monopole operators have spin = $\frac{M}{2}$ mod 1, i.e. $(-1)^{M} = (-1)^{F}$
 - In the previous example "fractional" isospin. Here "fractional" spin.
- Standard \mathcal{T} -symmetry $\mathcal{T}^2 = (-1)^F$

Break the magnetic U(1) symmetry [Cordova, Hsin, NS; Gomis, Komargodski, NS]

- Add to the Lagrangian a charge 2 monopole operator.
 Cannot add a charge 1 monopole it is a fermion.
- It breaks the

- magnetic symmetry $U(1)_M \rightarrow \mathbb{Z}_2$: $(-1)^M$

- $-\mathcal{T}$ -symmetry
- But it preserves another time-reversal symmetry (a subgroup of the original symmetry)

$$\mathcal{T}' = \mathcal{T}e^{\frac{i\pi}{2}M}$$

Break the magnetic U(1) symmetry [Cordova, Hsin, NS; Gomis, Komargodski, NS]

$$\mathcal{T}' = \mathcal{T}e^{\frac{i\pi}{2}M}$$

• Its algebra is non-standard

$$\mathcal{T}'\mathcal{C} = \mathcal{C}\mathcal{T}'(-1)^M$$
$$(\mathcal{C}\mathcal{T}')^2 = (-1)^M = (-1)^F$$
$$(\mathcal{T}')^2 = 1 \neq (-1)^F$$

 \mathcal{C} and \mathcal{T}' do not commute.

 \mathcal{T}' is not a conventional time-reversal symmetry, but \mathcal{CT}' is.

What is the long distance behavior?

- What are the phases?
 - Gapped? Topological?
 - Symmetry breaking?
- What happens at the phase transitions? First or second order?

– And if second order, free or interacting?

• It is clear for large |m|

CONJECTURES AHEAD

Vary m at large |k| or at large N_f

- Large k. Essentially free fermions with a modified Gauss law constraint
- Large N_f . Second-order transition as a function of the fermion mass m [Appelquist, Nash, Wijewardhana]
- Conjecture that this is the case for all k, q, and N_f .

 $U(1)_{k-\frac{1}{2}N_{f}q^{2}}$ $W(1)_{k+\frac{1}{2}N_{f}q^{2}}$ m < 0 m > 0Second order transition at m = 014

$U(1)_k$, $N_f = 1$ with charge one (q = 1)

 $U(1)_{1/2}$ flows to the O(2) Wilson-Fisher fixed point [Chen, Fisher, Wu; Barkeshli, McGreevy; NS, T. Senthil, Wang, Witten; Karch, Tong]

- The spin-zero monopole operator of the gauge theory is the order parameter of the O(2) model.
- Emergent $\mathcal T\text{-symmetry}$ in the IR

 $U(1)_{3/2}$ flows to a fixed point with SO(3) symmetry [Aharony, Benini, Hsin, NS; Benini, Hsin, NS]

- The spin-one monopole operator of the gauge theory becomes a conserved current in $O(2) \rightarrow SO(3)$.
- Several dual bosonic and fermionic descriptions

$U(1)_0, N_f = 2 \text{ with } q = 1$

[Xu, You; Karch, Tong; Hsin, NS; Benini, Hsin, NS; Wang, Nahum, Metlitski, Xu, T. Senthil]

• Microscopically: global U(2), C (they do not commute), and T-symmetry

– ${\mathcal T}$ and ${\mathcal C}{\mathcal T}$ have a non-standard algebra

$$\mathcal{T}^2 = (\mathcal{CT})^2 = (-1)^M$$

- Conjectured IR behavior: fixed point with enhanced global O(4) symmetry
- Dual fermionic description: $U(1)_0$ with $N_f = 2$
 - Its SU(2) flavor symmetry includes the original $U(1)_M$, and vice versa.

 $U(1)_0$, $N_f = 2$ with q = 1[Benini, Hsin, NS; Komargodski, NS]

Break the magnetic symmetry by adding to the Lagrangian a double monopole operator

- This explicitly breaks the flavor $SU(2) \rightarrow U(1)$ and the magnetic $U(1)_M \rightarrow \mathbb{Z}_2$.
- For some range of m the remaining flavor U(1) symmetry is spontaneously broken.
 - The UV theory is massive, but the IR theory is gapless!

 $U(1)_0, N_f = 1 \text{ with } q = 2$ [Cordova, Hsin, NS]

- Flows to a free Dirac fermion χ and a decoupled
 U(1)₂ TQFT
 - Similar, but not identical to [Son; Wang, T. Senthil; Metlitski, Vishwanath; NS, T. Senthil, Wang, Witten].
- The monopole operator in the UV becomes the free fermion χ in the IR.
- The Wilson line with charge 1 in the UV is described as the Wilson line of $U(1)_2$ (semion).

Break the magnetic U(1) symmetry [Cordova, Hsin, NS; Gomis, Komargodski, NS]

Add to the Lagrangian a charge 2 monopole operator.

- It preserves $T' = Te^{\frac{i\pi}{2}M}$ with a nonstandard algebra
- In the IR it splits the fixed point with a massless Dirac fermion to two points with massless Majorana fermions

Summary

QED₃: $U(1)_k$ gauge theory with charged fermions.

- Subtle global symmetry, especially in the action on monopoles
 - Fractional (global symmetry) charges and spins
 - Unusual algebras involving ${\mathcal C}$ and ${\mathcal T}$
- Conjectures about the IR behavior of these systems
 - Enhanced global symmetry
 - Dual descriptions
- This is a tiny part of a long story about the dynamics of 2+1 dimensional QFT.
- Most of it is still unknown...