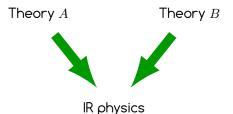
Dualities and Dynamics in 2+1 Dimensions

Francesco Benini

SISSA(Trieste)

Strings 2018 25–29 June Progress on IR dynamics of certain gauge theories in 2+1 dimensions


- with/without Chern-Simons interactions
- with scalar and/or fermionic matter, mostly in fundamental rep.

Relativistic QFT in the continuum

- * Utilized in many condensed matter problems:
 - quantum phase transitions of spin liquids and quantum magnets
 - high- T_c superconductors
 - edge modes of topological insulators
 - half-filled Landau level
- * Engineer QED with CS interactions and fermions on graphene films

[Lee, Wang, Zalatel, Vishwanath, He 18]

Progress driven by (conjectural) IR dualities (in HE sense)

Particularly powerful for IR fixed points

* Important role played by ('t Hooft) anomalies for global symmetries

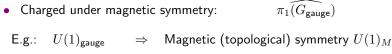
Particle / vortex duality [Peskin 78; Dasgupta, Halperin 81]

Simple, but with lots of beautiful physics:

gapped & broken phases \leftrightarrow Higgsed & free-photon phasesperturbative excitations $(m^2 > 0)$ \leftrightarrow (finite energy) vorticesfundamental field ϕ \leftrightarrow monopole operator \mathfrak{M} U(1) symmetry \leftrightarrow U(1) magnetic symmetryO(2) Wilson-Fisher fixed point \leftrightarrow IR CFT

Lattice Monte Carlo: [Nguyen, Sudbø 99; Kajantie, Laine, Neuhaus, Rajantie, Rummukainen 04]

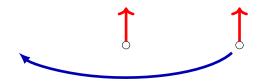
Monopole operators


Local disorder operators: defined by boundary conditions in path-integral

['t Hooft 78; Borokhov, Kapustin, Wu 02]

CFT: radial quantization

[Chester, Dyer, Iliesiu, Mezei, Pufu, Radicevic, Sachdev, ...]



$$J_{\mu} = \epsilon_{\mu\nu\rho} F^{\nu\rho}$$

$$SO(N \ge 3) \Rightarrow \mathbb{Z}_2$$

• Semiclassical monopoles can have electric charges Dressing by matter field zero-modes \Rightarrow spin and global quantum numbers

Flux attachment

Attaching one unit of magnetic flux to particles, their statistics changes

[Wilczek 82; Polyakov 88; Zhang, Hansson, Kivelson 88; Jain 89; Shaji, Shankar, Sivakumar 90; Paul, Shankar, Sivakumar 91; Fradkin, Lopez 91; Chen, Fisher, Wu 93; Fradkin, Schaposnik 94; ...]

Realized through

Chern-Simons interactions

$$\mathcal{L} = \frac{1}{4\pi} \, ada + \left| D_a \phi \right|^2$$

- \bullet Semiclassical "bare" monopole $\mathfrak{M}_{\mathsf{bare}}$ is not gauge invariant
- Gauge-invariant monopole $\mathfrak{M} = \mathfrak{M}_{\mathsf{bare}}\phi$ " has spin $\frac{1}{2}$

Particle/vortex dualities with fermions

$$\begin{split} U(1)_1 \text{ with } \phi & \text{free Dirac } \psi \\ \mathcal{L} = \frac{1}{4\pi} a da + |D_a \phi|^2 + |\phi|^4 & \longleftrightarrow \quad \mathcal{L} = \bar{\psi} \partial \!\!\!/ \psi \end{split}$$

$$\begin{split} U(1)_{\frac{1}{2}} \mbox{ with } \psi & O(2) \mbox{ vector model} \\ \mathcal{L} &= \frac{1}{4\pi} a da + \bar{\psi} D \!\!\!/_a \psi & \longleftrightarrow \quad \mathcal{L} &= |\partial \phi|^2 + |\phi|^4 \end{split}$$

Also fermion/fermion duality: relevant for half-filled Landau level

[Barkeshli, McGreevy 12; Son 15; Wang, Senthil 15; Metlitski, Vishwanath 15; Mross, Alicea, Motrunich 15; Mulligan, Raghu, Fisher 16; Karch, Tong 16; Seiberg, Senthil, Wang, Witten 16; Murugan, Nastase 16]

Vector models at large N, k

Singlet sector of critical O(N) model

$$\begin{array}{c} \tilde{\lambda} = \frac{k}{N} \ , \ O(k)_{-N} \\ \longleftarrow \\ \hline \\ O(N)_k \ , \ \lambda = \frac{N}{k} \end{array}$$

Singlet sector of k free fermions

• High-spin symmetry (large N): conserved currents $J^{(s)}$ with s = 2, 4, 6, ...

$$J^{(s)} = \varphi^i \partial^s \varphi^i + \dots \qquad J^{(s)} = \psi^a \gamma \partial^{s-1} \psi^a + \dots$$

All primary operators are products of $J^{(s)}{}^{\prime s}$ and $J^{(0)}=\varphi^i\varphi^i$ or $\psi^a\psi^a$

- Parity-breaking deformation: couple to Chern-Simons gauge theory
- Duality: identify the two families with $\tilde{\lambda} = 1/\lambda$ [Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin 11; Aharony, Gur-Ari, Yacoby 12]

• Spectrum of primaries is independent of λ (at large N)

[Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin 11; Aharony, Gur-Ari, Yacoby 12]

• Correlation functions (of single-trace ops): 3 conformal structures

$$\langle J^{(s_1)} J^{(s_2)} J^{(s_3)} \rangle = \alpha_{s_1 s_2 s_3} T_{\mathsf{bos}} + \beta_{s_1 s_2 s_3} T_{\mathsf{fer}} + \gamma_{s_1 s_2 s_3} T_{\mathsf{odd}}$$

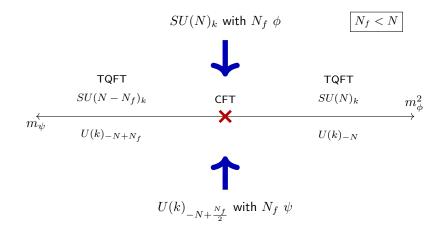
 α, β, γ fixed by high-spin symmetry, in terms of two parameters

[Maldacena, Zhiboedov 11; 12]

$$c_1, c_2(N, k)$$

Fix by direct computation. [Aharony, Gur-Ari, Yacoby 12; Gur-Ari, Yacoby 12]

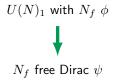
- Thermal partition functions (also away from fixed point) [Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin 11; Aharony, Giombi, Gur-Ari, Maldacena, Yacoby 12; Jain, Minwalla, Sharma, Takimi, Wadia, Yokoyama 13; Choudhury, Dey, Halder, Jain, Janagal, Minwalla, Prabhakar 18]
- Large N: blind to many details


3D dualities among vector models

IR dualities between Chern-Simons gauge theories with matter in fundamental rep [Aharony 15; Hsin, Seiberg 16; Aharony, FB, Hsin, Seiberg 16]

scalars ϕ with $|\phi|^4$ interactions fermions W) $\longleftrightarrow \quad U(k)_{-N+\frac{N_f}{2}}$ $SU(N)_k$ with $N_f \phi$ with $N_f \psi$ $\longleftrightarrow \quad SU(k)_{-N+\frac{N_f}{2}}$ $U(N)_k$ with $N_f \phi$ with $N_f \psi$ $\longleftrightarrow \quad U(k)_{-N+\frac{N_f}{2},-N\mp k+\frac{N_f}{2}}$ with $N_f \psi$ $U(N)_{k,k\pm N}$ with $N_f \phi$ $USp(2N)_k$ with $N_f \phi \longrightarrow USp(2k)_{-N+\frac{N_f}{2}}$ with $N_f \psi$ $SO(N)_k$ with $N_f \ \phi_{\mathbb{R}} \quad \longleftrightarrow \quad SO(k)_{-N+\frac{N_f}{2}}$ with $N_f \psi_{\mathbb{R}}$

valid for N_f less than a bound ($\lesssim N$)


Conjecturally, these theories have only one phase transition

Gapped phases: match via level-rank duality

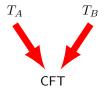
Conjecture: 2nd order phase transition

Bosonization of free fermions

 $SO(N \ge 3)_1$ with $N_f \ \phi_{\mathbb{R}}$ \bigvee N_f free Majorana $\psi_{\mathbb{R}}$

 $(N_f \leq N)$ [Aharony 15; Seiberg, Senthil, Wang, Witten 16; Karch, Tong 16; Hsin, Seiberg 16] $(N_f \le N - 2)$ [Metlitski, Vishwanath, Xu 16; Aharony, FB, Hsin, Seiberg 16]

Fermionization of Wilson-Fisher scalars

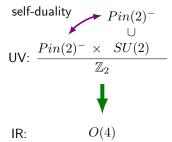

 $SO(k \geq 3)_{-\frac{1}{2}}$ with $\psi_{\mathbb{R}} \longrightarrow O(1)$ (Ising) vector model

 $U(k)_{-\frac{1}{2}} \text{ with } \psi \qquad \longleftrightarrow \qquad O(2) \text{ vector model}$

IR quantum-enhanced symmetries

Symmetries can enhance at IR fixed points

* Sometimes dualities make this manifest


- T_B can have larger symmetry than T_A
- The symmetry groups of T_A and T_B might not commute

$$[G_A, G_B] \neq 0 \quad \Rightarrow \quad G_{\mathsf{IR}} \supset G_A, G_B$$

Caveat: assume IR fixed point with no symmetry breaking

* E.g.: QED with one fermion $U(1)_{\frac{3}{2}}$ with 1 ψ $SU(2)_{-1}$ with 1 ψ UV: G = SO(3)UV: G = O(2)CFT with SO(3) symmetry Basic monopole operators \mathfrak{M}^{\pm} : spin 1 IR conserved currents $O(2) \rightarrow SO(3)$ [Aharony, FB, Hsin, Seiberg 17]

* E.g.: QED $U(1)_0$ with 2 ψ

 $\mathcal{M}^{\pm 2}$ become extra IR currents [Xu, You 15; Karch, Tong 16; Hsin, Seiberg 16; FB, Hsin, Seiberg 17; Cordova, Hsin, Seiberg 18]

* Examples with emergent time-reversal symmetry

 $\mathsf{E.g.:} \ U(N)_1 \ \mathsf{with} \ \mathbf{1} \ \phi \quad \longleftrightarrow \quad \mathsf{free} \ \mathsf{Dirac} \ \psi$

A few generalizations

E.g.:

More gauge groups from gauging global symmetries (choice of counter-terms)

E.g.: gauge groups O, Spin, Pin^{\pm} , ...

[Cordova, Hsin, Seiberg 17]

Produce intricate nets, testing the conjectured dualities

Quiver gauge theories (inspired by 3D SUSY mirror symmetry)

[Karch, Robinson, Tong 16; Jensen, Karch 17]

 $U(1)^{N-1}$ with N "bifundamental" ϕ CS matrix $\kappa_{ab} = SU(N)$ Cartan matrix (hard to precisely identify scalar potential)

Vector models with scalars and fermions

va

[Jain, Minwalla, Yokoyama 13; Gur-Ari, Yacoby 15; FB 17; Jensen 17]

 $\begin{array}{c} m_{\phi}^2 < 0 \\ m_{\psi} < 0 \end{array} \qquad \qquad m_{\psi} < 0 \end{array}$

$$\begin{array}{rcl} SU(N)_{k-\frac{N_f}{2}} \text{ with } N_s \ \phi, \ N_f \ \psi & \longleftrightarrow & U(k)_{-N+\frac{N_s}{2}} \text{ with } N_f \ \phi, \ N_s \ \psi \\ & \vdots \\ \text{valid for } N_s, \ N_f \text{ less than a bound.} \\ \\ \text{Two-dimensional phase diagram under} \\ \text{symmetry-preserving deformations} \\ m_{\phi}^2 |\phi|^2 \text{ and } m_{\psi} \overline{\psi} \psi \end{array}$$

* Semiclassically: match gapped phases and gapless lines Origin: multicritical fixed point? more intricate topology? • Multi-critical point from extra tuning of vector models (at large N):

 $\begin{array}{ccc} U(N)_k \text{ with } N_f \phi \\ \text{tune } |\phi|^2 \text{ and } |\phi|^4 \\ \text{to zero} \end{array} \longleftrightarrow \begin{array}{c} \text{Legendre transform of} \\ U(k)_{-N} \text{ with } N_f \psi \\ \text{w.r.t. } \overline{\psi}\psi \\ \text{(Gross-Neveu critical point)} \end{array}$

[Aharony, Jain, Minwalla to appear; see Minwalla's talk last year]

How to test such conjectures?

- Large N, k computations (already described)
- Consistency under relevant deformations (reduce to level-rank duality of TQFTs or other dualities)
- Deformation from SUSY dualities

[Jain, Minwalla, Yokoyama 13; Gur-Ari, Yacoby 15] [Kachru, Mulligan, Torroba, Wang 16]

• 't Hooft anomaly matching (more later)

[FB, Hsin, Seiberg 17]

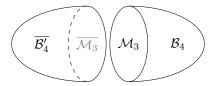
• Embedding in String Theory

[Jensen, Karch 17; Armoni, Niarchos 17; Argurio, Bertolini, Bigazzi, Cotrone, Niro 18]

• Lattice Monte Carlo computations? (not many results for parity-breaking theories) [Hands, Kogut, Scorzato, Strouthos; Karthik, Narayanan]

 $d = 4 - \epsilon$ expansion? [Di Pietro, Komargodski, Shamir, Stamou 15]

Anomalies


Theory with internal symmetry ${\boldsymbol{G}}$ can be coupled to background ${\boldsymbol{G}}$ gauge fields

 \rightarrow observables E.g.: $Z[A_{background}]$

Might be impossible (by local counterterms) to make Z a well-defined or gauge-invariant function of G-bundles

```
\rightarrow 't Hooft anomaly
```

• Extend G-bundles to 4-dim bulk: $Z[A_{background}]$ depends on extension

Quantify 't Hooft anomaly by dependence on extension

- \rightarrow classical TQFT (characteristic class) in 4-dim (anomaly inflow)
- * 't Hooft anomalies are independent of RG flow

• Example in 3D (no anomalous currents)

[FB, Hsin, Seiberg 17]

 $SU(2)_k$ with $N_f \phi$: $USp(2N_f)/\mathbb{Z}_2$ faithfully-acting symmetry

Gauge + Global Chern-Simons counter-terms:

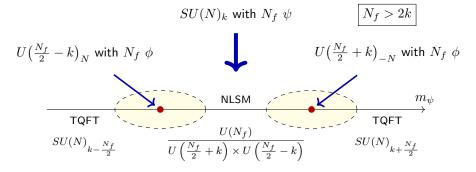
 $\frac{SU(2)_k \times USp(2N_f)_L}{\mathbb{Z}_2}$

Quantization: $k \in \mathbb{Z}$, $L \in \mathbb{Z}$, $k + N_f L \in 2\mathbb{Z}$

k odd, N_f even: 't Hooft anomaly

$$S_{\mathrm{anom}} = \pi \int \frac{\mathcal{P}(w_2)}{2} , \qquad e^{iS_{\mathrm{anom}}} = \pm 1$$

Anomalies can be computed and matched across dualities

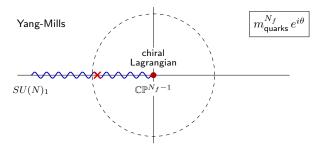

[FB, Hsin, Seiberg 17; Komargodski, Seiberg 17; Cordova, Hsin, Seiberg 17]

The dualities suggest

other interesting physical phenomena

Quantum phases: spontaneous symmetry breaking

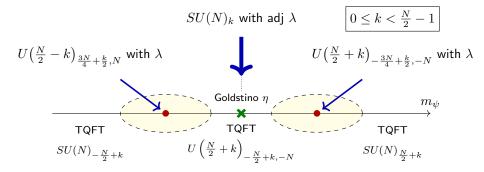
Dualities suggest quantum phases with SSB in 3D QCD for: $2k < N_f < N_f^*$ [Komargodski, Seiberg 17]



- Two phase transitions with different dual descriptions
- Anomalies match. Reproduced by a WZ term in NLSM
- For k = 0, compatible with [Vafa, Witten 84]
- Cannot be true for arbitrarily large N_f [Appelquist, Nash 90; Grover 12; Sharon 18] Some numerical evidence (in $SU(2)_0$ with $N_f \psi$) [Karthik, Narayanan 18]

3D transitions from 4D domain walls

4D SU(N) QCD with N_f flavors ($< N_f^{(conf.)}$) [Gaiotto, Kapustin, Komargodski, Seiberg 17]


[Gaiotto, Komargodski, Seiberg 17]

- 4D bulk 1st order transition for $\theta = \pi$ (broken CP) \rightarrow 3D domain wall
- Large $|m_{quark}|$: $SU(N)_1$ TQFT (e.g. from [Acharya, Vafa 01])
- Small $|m_{quark}|$: \mathbb{CP}^{N_f-1} NLSM
- 3D phase transition for some value m^*_{quark} described by 3D vector model: $SU(N)_{1-\frac{N_f}{2}}$ with $N_f \psi$

Spontaneous Supersymmetry Breaking

Dualities of gauge theories with adjoint fermions shed light on SUSY breaking [Witten 99; Gomis, Komargodski, Seiberg 17]

- SUSY breaking point: massless Goldstino η + TQFT
- Three phase transitions, each with a dual description

Concluding remarks

- Lessons from SUSY QFTs \Rightarrow Predictions about non-SUSY QFTs
- Explore a variety of directions
 - E.g.: boundary conditions more general defects

[Gaiotto; Aitken, Baumgartner, Karch, Robinson]

- Interactions with other non-perturbative methods. E.g. conformal bootstrap
- Experimentally testable?