Structure of Anomalies in 4d SCFTs from M5-branes

Emily Nardoni University of California, San Diego

1803.00136 w/ Ibrahima Bah 1807.xxxx w/ Ibrahima Bah, Federico Bonetti, Ruben Minasian

Strings 2018 | Okinawa Institute of Science and Technology | June 25, 2018

- This setup allows us to organize a large space of (generically strongly coupled!) QFTs geometrically.
- Much of the richness of Class S comes from the punctures!

Goal: First principles way of computing 't Hooft anomalies when compactifying M5-branes on a Riemann surface, for both $\mathcal{N}=1$ and $\mathcal{N}=2$ in 4d.

For simplicity, here I'll restrict to $\mathcal{N}=2$.

4d anomalies from 6d

- In general, one can reduce anomalies to lower dimensions. This will capture the contribution due to the compactification (although might fail with accidental symmetries!).
- For class *S*, when *n*=0 this method has been powerful in computing the anomalies of the 4d theories. [Bah, Beem Bobev, Wecht]

Method: Anomaly Inflow

 In the presence of M5-branes, bulk diffeomorphisms localized on the brane are **anomalous**. The anomalies are canceled by terms in the bulk 11d sugra effective action:

$$\delta S_{\text{eff}} = 2\pi \int_{W_6} I_6^{(1)}$$

 $I_6^{(1)}$ related to anomaly polynomial I_8 of 6d theory via the **descent** procedure,

$$I_8 = dI_7^{(0)}, \qquad \delta I_7^{(0)} = dI_6^{(1)}$$

[Witten; Freed, Harvey, Minasian, Moore; Harvey, Minasian, Moore]

 W_6

inflow

Roadmap: Inflow for M5-branes on $M^{1,3} \ge \sum_{g,n} M^{1,3}$

[Bah, EN]

1. M5-branes magnetically source G_4 :

- 2. Generalizing to the Class S geometries, the normal bundle **reduces** SO(5) \rightarrow SO(3) x SO(2): $Nd\rho(r) \wedge e_2^{\Omega} \wedge e_2^{\phi}(F_{\Sigma})$
- 3. The RHS is a function of connection forms for background field strengths. F_{Σ} over $\sum_{g,n}$ has **sources** at the punctures.
- 4. δS_{eff} has new contributions from **boundary** terms in the integration by parts.

Punctures imply sources

[Bah, EN; Bah, Bonetti, Minasian, EN]

• Motivated by the holographic description, [Gaiotto, Maldacena; Bah] the curvature form F_{Σ} gets explicit sources localized at the punctures as well as along a transverse direction μ to the branes:

New components for inflow with punctures:

[Bah, EN; Bah, Bonetti, Minasian, EN]

• There are now two types of terms in the variation:

$$\frac{\delta S_{\text{eff}}}{2\pi} = \int_{S_{\Omega}^{2} \times S_{\phi}^{1} \times [\mu] \times \Sigma_{g,n} \times M^{1,3}} \tilde{e}_{4} \wedge \left(N \tilde{I}_{6}^{\inf(1)} - \frac{N^{3}}{6} \tilde{e}_{4} \wedge \tilde{e}_{2}^{(1)}\right) \qquad \text{gives 6d (2,0) } I_{8}$$

$$\text{localizes on the brane} + \int_{S_{\Omega}^{2} \times S_{\phi}^{1} \times \partial([\mu] \times \Sigma_{g,n}) \times M^{1,3}} \tilde{e}_{3}^{(0)} \wedge \left(N \tilde{I}_{6}^{\inf(1)} - \frac{N^{3}}{9} \tilde{e}_{4} \wedge \tilde{e}_{2}^{(1)}\right)$$

$$I_{6}^{\inf} = I_{6}(\Sigma_{g,n}) + \sum_{i=1}^{n} I_{6}(P_{i})$$

$$p_{k} = \text{Pontryagin classes}$$

$$\tilde{e}_{4} = d\tilde{e}_{3}^{(0)}, \quad \delta \tilde{e}_{3}^{(0)} = d\tilde{e}_{2}^{(1)}$$

* This has the structure of the usual bulk integrand, but now $e_4 \rightarrow \tilde{e}_4$ depends on the improved connection forms. Reducing over $\sum_{g,n}$ gives the known answer.

New components for inflow with punctures:

[Bah, EN; Bah, Bonetti, Minasian, EN]

• There are now two types of terms in the variation:

$$\frac{\delta S_{\text{eff}}}{2\pi} = \int_{S_{\Omega}^{2} \times S_{\phi}^{1} \times [\mu] \times \Sigma_{g,n} \times M^{1,3}} \widetilde{e}_{4} \wedge \left(N \widetilde{I}_{6}^{\inf(1)} - \frac{N^{3}}{6} \widetilde{e}_{4} \wedge \widetilde{e}_{2}^{(1)} \right) \\ + \int_{S_{\Omega}^{2} \times S_{\phi}^{1} \times \partial([\mu] \times \Sigma_{g,n}) \times M^{1,3}} \widetilde{e}_{3}^{(0)} \wedge \left(N \widetilde{I}_{6}^{\inf(1)} - \frac{N^{3}}{9} \widetilde{e}_{4} \wedge \widetilde{e}_{2}^{(1)} \right) \\ \text{localizes on the boundaries} \\ I_{6}^{S} = I_{6}(\Sigma_{g,n}) + \sum_{i=1}^{n} I_{6}(P_{i})$$

* Reducing over the boundaries gives the additional puncture anomalies.

⇒ The topological structure of the 4d anomalies follows directly from inflow arguments.

Thanks! ありがとうございます