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Overview

• Thank you organisers for this opportunity. 

• For consistency III must agree with the RNS results. We find 
they do. We will work with open strings. 

• We present the results of study of massive vertex operators in the 
pure spinor formulation 

I. Theta expansion of unintegrated vertex operator at 

II.  Integrated vertex operator at  

III. Computation of some tree level three point amplitudes using I
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• In 10 dimensions, states at first excited level of open string form a  
massive             spin 2 supermultiplet   comprising

gmn = Gmn|✓=0 bmnp = Bmnp|✓=0

44 + 84 bosonic d.o.f

 s↵ =  s↵|✓=0

128 fermionic d.o.f

and the fact that the matter and the ghost sector fields do not have any non trivial OPE

between them.

After briefly reviewing the basics, we now turn to the first massive unintegrated vertex

operator [22, 23]. There are 128 fermionic and 128 bosonic degrees of freedom at the first

massive level of the open string spectrum. The fermionic degrees of freedom are contained

in a spin-3/2 field  m↵ whereas the bosonic degrees of freedom are contained in a traceless

symmetric tensor gmn and a 3-form field bmnp. These fields are demanded to satisfy

@m m↵ = 0 ; �m↵� m� = 0 ; @mbmnp = 0 ; ⌘mngmn = 0 ; @mgmn = 0 (2.12)

These constraints ensure that the number of independent components in the fields  m�, bmnp

and gmn are 128, 84 and 44 respectively. These fields form a massive spin-2 supermultiplet in

10 dimensions. To describe the system in a supersymmetric invariant manner, we introduce

basic superfields  m↵, Bmnp and Gmn whose theta independent components are  m↵, bmnp and

gmn respectively. The higher components of these basic superfields contain the same physical

fields in a more involved manner.

At the first mass level, the unintegrated vertex operator of the open string is given by [23]

V = : @✓��↵B↵� : + : d��
↵C�

↵ : + : ⇧m�↵Hm↵ : + : Nmn�↵F↵mn : (2.13)

where, the superfields appearing in the above expression are given in terms of the basic super-

fields Bmnp and  m↵ to be [23]

Hs↵ = �72 s↵ =
3

7
(�mn) �

↵ D�Bmns , Cmnpq =
1

2
@[mBnpq] ,

F↵mn =
1

8

✓
7@[mHn]↵ + @q(�q[m)

�
↵ Hn]�

◆
(2.14)

The normal ordering : : is defined as

: AB : (z) ⌘ 1

2⇡i

I

z

dw

w � z
A(w)B(z) (2.15)

where, A and B are any two operators and the contour surrounds the point z.

The basic superfields at the first massive level, namely, Bmnp, m↵ and Gmn satisfy the

superspace equations4 [22]

D↵Gsm = 16 @p(�p(s m))↵ (2.16)

4To go from position to momentum space and vice versa, we use the convention @m ! ikm and km !
�i@m. We shall do calculations mostly in the momentum space but express the final result in the position
space using this rule.
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• In the unintegrated vertex operator these appear as [Berkovits, Chandia (2002)]

Unintegrated vertex operator at first excited level of open string  

N = 1



Theta expansion of unintegrated vertex operator

• Theta expansion is performed by making use of [Chakrabarti, SPK,Verma (2017)]

as kmBmnp = 0 are also needed to remove the extra degrees of freedom at the zeroth order in ✓

expansion. We need to ensure that all these relations are consistent with the on-shell condition

QV = 0 (or equivalently equations(2.14) to (2.20)).

In this section, we give the above mentioned relationships among the superfields. In the

process, we also give the covariant generalizations of the rest frame results (2.28) - (2.33) given

in section 2.2. We shall be very brief and just state the result. One can check the validity

of these by writing them in the rest frame and verifying that they agree with those in the

subsection 2.2 and satisfy all the equations. In appendix E, we indicate how to check this

systematically. For simplicity, we work in the momentum space in what follows9.

We start by recalling the rest frame result (2.29) which relates  b
� and Hb

�. We also note

that  0
� does not appear anywhere in the rest frame analysis. Hence, we can set it to zero in

the rest frame. In fact, a non zero  0
� will not be consistent with the fact that  s� contains

128 degrees of freedom in the rest frame unless further constraints are imposed on  a
�. This

means that the covariant generalizations of (2.29) and (2.30) can be taken to be

Hm� = �72 m� , (�m)
↵� m

� = 0 (3.1)

We also need the covariant generalization of (2.33) which is given by

Gmn = 2D↵�
↵�
(m n)� , ⌘mnGmn = 0 (3.2)

These results have the correct limit in the rest frame.

We now write down the relations between the various superfields and all the necessary

constraints which are needed to ensure that superfields contain only the physical degrees of

freedom.

D↵Gsm = 16ikp(�p(s m))↵ (3.3)

D↵Bmnp = 12(�[mn p])↵ + 24↵0ktk[m(�|t|n p])↵ (3.4)

D↵ s� =
1

16
Gsm�

m
↵� +

i

24
kmBnps(�

mnp)↵� �
i

144
kmBnpq(�smnpq)↵� (3.5)

(�m)↵� s� = 0 ; km m� = 0 ; kmBmnp = 0 ; kmGmn = 0 & ⌘mnGmn = 0 (3.6)

9i.e. we replace all the @m by i km.
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 s� =  s� +

1

16
(�m✓)� gsm � i

24
(�mnp✓)�kmbnps �

i

144
(� npqr

s ✓)�knbpqr �
i

2
kp(�m✓)�( (m�s)p✓)

� i

4
km(�

mnp✓)�( [s�np]✓)�
i

24
(� mnpq

s ✓)�km( q�np✓)�
i

6
↵0kmk

rks(�
mnp✓)�( p�rn✓)

+
i

288
↵0(�mnp✓)�kmk

rks(✓�
q
nr✓) gpq �

i

192
(�mnp✓)�km(✓�

q
[np✓)gs]q �

i

96
kp(�m✓)�(✓�pq(s✓) gm)q

� i

1152
(�smnpq✓)�k

m(✓�npt✓) g
qt � 1

1728
(�mnp✓)�km(✓�

tuvw
nps✓)ktbuvw � 1

864↵0 (�s✓)�(✓�
npq✓)bnpq

� 1

10368
(� mnpq

s ✓)�km(✓�tuvwnpq✓)k
tbuvw � 1

864
(�m✓)�(✓�

npq✓)bnpqkmks

� 1

576
(�smnpq✓)�k

m(✓�tun✓)b pq
u kt �

1

96↵0 (�
m✓)�(✓�

qr
(s✓)bm)rq +

1

96
(�m✓)�(✓�

nqr✓)knk(sbm)qr

+
1

96
(�mnp✓)�km(✓�

r
q[n✓)bps]rk

q + O(✓4)

(4.14)

Similarly, the ✓ expansion of the superfield B↵� is given by

B↵� = �mnp
↵�

"
bmnp + 12( p�mn✓) + 24↵0krkm( p�rn✓) +

3

8
(✓� q

mn ✓) gpq �
3i

4
(✓�tum✓)ktbunp

+
3

4
↵0krkm(✓�

q
rn ✓) gpq �

i

24
(✓�tuvwmnp✓)k

tbuvw � 1

6
iks ( v�tu✓) (✓�stuvmnp✓)

�4i↵ksktkm (✓�tun✓) ( p�su✓) + iks (✓�tmn✓) ( p�st✓) + iks (✓�tmn✓) ( t�sp✓)

+2iks (✓�stm✓) ( n�tp✓)� iks (✓�stm✓) ( t�np✓) + O(✓4)

#
(4.15)

1

64↵0 (✓�smn✓)(✓�tupbstu✓)�
1

288↵0 (✓�stu✓)(✓�mnpbstu✓) +
1

64↵0 (✓�stu✓)(✓�unpbstm✓)

+
1

32
(✓�sux✓)(✓�txpbsmn✓)k3tk3u �

1

16
(✓�sun✓)(✓�txpbstm✓)k3uk3x

+
1

64
(✓�stx✓)(✓�unpbstm✓)k3uk3x +

1

192
(✓�xzm✓)(✓�stuyznpbstu✓)k3xk3y

+
1

192
(✓�uyz✓)(✓�stxzmnpbstu✓)k3xk3y +

1

3456
(✓�stuwxyz✓)(✓�vxyzmnpbstu✓)k3vk3w

+
1

32
(✓�svn✓)(✓�tupbstu✓)k3vk3m +

1

64
(✓�tuv✓)(✓�snpbstu✓)k3vk3m

� 1

96
(✓�stu✓)(✓�vnpbstu✓)k3vk3m � 1

32
(✓�stv✓)(✓�uvpbstm✓)k3uk3n (4.16)
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The inclusion of I ensures that all operator basis constructed in step 1 now can be treated

as linearly independent. Instead of introducing the Lagrange multipliers, one can also

directly eliminate some basis operators in favor of others.

• Step 5 : Express each of the arbitrary superfields in U as a generic linear combination of

Ψmα, Bmnp andGmn and their space time derivatives. The correct number of terms in each

ansatz can be determined by using the representation theory of SO(9) which is the little

group for the massive states in 10 dimensions. The number of times Ψmα, Bmnp and Gmn

will appear in a given ansatz is same as the number of 128, 84 and 44 representations

of SO(9) respectively in the superfield. This can be figured out by analyzing the index

structure of the superfield in the rest frame.

• Step 6 : Substitute the ansatz of step 5 in the equations obtained in step 4. These

lead to a set of linear algebraic equations for the unknown co-efficients appearing in the

ansatz.

• Step 7 : Solve these linear equations. Plugging the solutions back allows us to express

U completely in terms of the superfields that describe the massive supermultiplet.

Following this procedure, the final form of the first massive integrated vertex operator is

obtained to be

U = : ΠmΠnFmn : + : ΠmdαF
α

m : + : Πm∂θαGmα : + : ΠmNpqFmpq :

+ : dαdβK
αβ : + : dα∂θ

βF α
β : + : dαN

mnGα
mn : + : ∂θα∂θβHαβ :

+ : ∂θαNmnHmnα : + : NmnNpqGmnpq : (3.20)

where, the superfields appearing in (3.20) are given in position space by

Fmn = −18

α′Gmn , F α
m =

288

α′ (γ
r)αβ∂rΨmβ , Gmα = −432

α′ Ψmα

Fmpq =
12

(α′)2
Bmpq −

36

α′ ∂[pGq]m , Kαβ = − 1

(α′)2
γαβmnpB

mnp

F α
β = − 4

α′ (γ
mnpq)α β∂mBnpq , Gα

mn =
48

(α′)2
γασ[mΨn]σ +

192

α′ γ
ασ
r ∂r∂[mΨn]σ

Hαβ =
2

α′γ
mnp
αβ Bmnp , Hmnα = −576

α′ ∂[mΨn]α − 144

α′ ∂
q(γq[m)

σ
α Ψn]σ

Gmnpq =
4

(α′)2
∂[mBn]pq +

4

(α′)2
∂[pBq]mn −

12

α′ ∂[p∂[mGn]q] (3.21)
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Integrated Vertex Operator

• For computation of a general amplitude integrated vertex operators is a 
must. 

• The integrated vertex for first massive open string is given by [Chakrabarti, 

SPK,Verma (2017)]



Integrated Vertex Operator

• The lessons learned while solving for U and theta expansion can be 
generalised to all mass levels for computing both unintegrated and 
integrated vertex operators in pure spinor formalism 

• We essentially make use of the relation 

QU = @V

and solve for U given V

• For details have a look at poster by Mritunjay Verma -“Integrated 
Massive Vertex Operator in Pure Spinor Formalism”



Some Amplitude Computations

• We compute some amplitudes involving the massive states and find 
them to be consistent with RNS results [Chakrabarti, SPK,Verma (To appear)]. 

• The tree level amplitudes are given by 

5 3-point tree
⌦
AAb

↵
amplitude

One of the applications of the results of previous section is in computing scattering amplitudes

involving the massive states in pure spinor formalism. Just for illustration, in this section, we

consider the 3-point tree amplitude involving 2 gluon fields11 (denoted by a(i)m ) and the 3-form

field bmnp. This amplitude was also considered in [22]. However, our result for ✓ expansion is

significantly di↵erent from that of [22]. Hence, we compute the contribution of terms in the

massive vertex operator upto O(✓3) to this amplitude and check that our result agrees with the

corresponding kinematic factor in the RNS formalism. The full amplitude acquires also the

contribution from higher ✓ components which we do not consider in this paper (see conclusion

for further comments regarding the full amplitude).

Since we shall only compute the 3-point function on the disk, the equation (2.10) tells us

that we need only the unintegrated vertex operator to compute the amplitude

A3 = hV 1V 2V 3i (5.1)

where, V i are the unintegrated vertex operators of interest (massive or massless).

The pure spinor measure is defined such that the bracket h...i gives non-zero answer if and

only if there are three � and five ✓ zero mode inside it. Symbolically, this is often abbreviated

as h�3✓5i ⇠ 1. More precisely, the pure spinor measure is normalized as

h(��m✓)(��n✓)(��p✓)(✓�mnp✓)i = 1 (5.2)

We now outline the procedure for computing the tree amplitudes. Given 3 external states

whose tree level scattering we wish to compute, the basic strategy is as follows :

• Write down the ✓ expansion of each vertex operator V i to the desired order.

• Total number of ✓ in the product V 1V 2V 3 for non-zero contribution to the amplitude

must be exactly equal to 5. So, from the product, we keep only those terms which have

exactly five factors of ✓.

• Since each unintegrated vertex operator V i has ghost number 1, they come with a single

factor of �↵. Therefore each term in the product V 1V 2V 3 always has exactly three factors

of �↵.
11The ✓ expansion of the massless fields is given in appendix D.
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• All the non-zero amplitudes have three       and five     zero modes.   
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•         are normalized via

which generates the following transformations

�Xm = ��m✓ , �✓↵ = �↵ , ��↵ = 0 , �d↵ = �⇧m(�m�)↵ , �w↵ = d↵ (2.5)

where, d↵ and ⇧m are supersymmetric invariant combinations

d↵ = p↵ � 1

2
�m

↵�✓
�@Xm � 1

8
�m
↵��m��✓

�✓�@✓� (2.6)

⇧m = @Xm +
1

2
�m
↵�✓

↵@✓� (2.7)

The OPE between various objects is given by

d↵(z)d�(w) = �
↵0�m

↵�

2(z � w)
⇧m(w) + · · · , d↵(z)⇧

m(w) =
↵0�m

↵�

2(z � w)
@✓�(w) + · · ·

d↵(z)V (w) =
↵0

2(z � w)
D↵V (w) + · · · , ⇧m(z)V (w) = � ↵0

(z � w)
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where, V is an arbitrary superfield, @ denotes the derivative with respect to world-sheet coor-

dinate, @m denotes the derivative with respect to the spacetime coordinate Xm and

D↵ ⌘ @↵ + �m
↵�✓

�@m (2.9)

denotes the supercovariant derivative. The · · · terms denote the non-singular terms.

The scattering of N external string states at tree level is described by the amplitude

AN = hV 1V 2V 3

Z
U4 · · ·

Z
UNi (2.10)

V and U in the above expression denote the unintegrated and integrated vertex operators

respectively. The correlation functions of pure spinor fields are computed using the OPEs

given in equation (2.8) and the identities of appendix C4.

After this brief recollection of general pure spinor results, we now turn to unintegrated

massive vertex operator.

4In appendix C, we only give the identities which are used in this paper. See [7] for a complete list.
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Amplitudes - Result

• We find 

It is easy to check that the above amplitudes are invariant under the gauge transformations
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For aaa amplitude, we have
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2.2 One Massless and Two Massive State

The amplitude is given by
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There are a total of 16 terms in this expression. We now simplify each of these terms to bring
it in a form which is suitable for Cadabra.
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Using this, the 1st term of (2.1.26) becomes
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This term cancels with the 1st and 3rd terms of T 0
2.

2.1.2 Total amplitude
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which generates the following transformations

δXm = λγmθ , δθα = λα , δλα = 0 , δdα = −Πm(γmλ)α , δwα = dα (2.5)

where, dα and Πm are supersymmetric invariant combinations

dα = pα − 1

2
γmαβθ

β∂Xm − 1

8
γmαβγmσδθ

βθσ∂θδ (2.6)

Πm = ∂Xm +
1

2
γmαβθ

α∂θβ (2.7)

The OPE between various objects is given by

dα(z)dβ(w) = −
α′γmαβ

2(z − w)
Πm(w) + · · · , dα(z)Π

m(w) =
α′γmαβ

2(z − w)
∂θβ(w) + · · ·

dα(z)V (w) =
α′

2(z − w)
DαV (w) + · · · , Πm(z)V (w) = − α′

(z − w)
∂mV (w) + · · ·

Πm(z)Πn(w) = − α′ηmn

2(z − w)2
+ · · · , Nmn(z)λα(w) =

α′(γmn)αβ
4(z − w)

λβ(w) + · · ·

Nmn(z)Npq(w) = − 3(α′)2

2(z − w)2
ηm[qηp]n +

α′

(z − w)

(
ηp[nNm]q − ηq[nNm]p

)
+ · · ·

J(z)J(w) = − (α′)2

(z − w)2
+ · · · , J(z)λα(w) =

α′

2(z − w)
λα(w) + · · · (2.8)

where, V is an arbitrary superfield, ∂ denotes the derivative with respect to world-sheet coor-

dinate, ∂m denotes the derivative with respect to the spacetime coordinate Xm and

Dα ≡ ∂α + γmαβθ
β∂m (2.9)

denotes the supercovariant derivative. The · · · terms denote the non-singular terms.

The scattering of N external string states at tree level is described by the amplitude

AN = ⟨V 1V 2V 3

∫
U4 · · ·

∫
UN⟩ (2.10)

V and U in the above expression denote the unintegrated and integrated vertex operators

respectively. The correlation functions of pure spinor fields are computed using the OPEs

given in equation (2.8) and the identities of appendix C4.

After this brief recollection of general pure spinor results, we now turn to unintegrated

massive vertex operator.

4In appendix C, we only give the identities which are used in this paper. See [7] for a complete list.
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 The tree level scattering amplitude for  N external states is given by

where, V and U are the unintegrated and integrated vertex operators

2.8.1 Tree-level prescription

N-point tree-level scattering amplitudes are computed by a correlation function with three

unintegrated vertices (2.68) and N − 3 integrated vertices (2.69),

A = ⟨NV 1V 2V 3

∫
U4· · ·

∫
UN ⟩. (2.84)

The computation of (2.84) proceeds as usual in a CFT. First one integrates out the

conformal weight one variables through their OPE’s to get an expression containing only

zero modes for λ’s and θ’s,

A =

∫
[dλ][dλ][dr]d16θNλαλβλγfαβγ(θ).

The measures [dλ], [dλ] and [dr] are given by

[dλ]λαλβλγ = ϵρ1...ρ11κ1...κ5
T ((αβγ))[κ1κ2κ3κ4κ5]dλρ1. . .dλρ11 (2.85)

[dλ]λαλbλγ = ϵα1...α11κ1...κ5T((αβγ))[κ1κ2κ3κ4κ5] dλα1
· · · dλα11

(2.86)

[dr] = ϵα1...α11κ1...κ5
T ((αβγ))[κ1κ2κ3κ4κ5]λαλβλγ ∂

α1

r · · ·∂α11

r (2.87)

This is almost the same recipe as in the minimal formalism, the difference is the

insertion of a regularization factor N , where

N = exp({Q,χ}) = e−(λλ)−(rθ) for χ = −(λθ).

The purpose of the regularization factor is due to the fact that the integration over λ and

λ may diverge because they are non-compact. However, as N = 1 + QΩ the integral will

be independent of the choice for the regularization.

Using the measures (2.85) – (2.87) one can show that

A =

∫
[dλ][dλ][dr]d16θNλαλβλγfαβγ(θ) = ⟨λαλβλγfαβγ(θ)⟩

and therefore the non-minimal prescription for tree-level amplitudes is equivalent to the

minimal pure spinor formalism.

2.8.2 Multiloop prescription

The prescription to compute g−loop amplitudes is given by

A =

∫
d3g−3τ⟨N (y)

3g−3∏

i=1

(

∫
dwiµi(wj)b(wj))

N∏

j=1

∫
dzjU(zj)⟩ (2.88)
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 The g-loop scattering amplitude for  N external states is given by

MOTIVATION



 INTEGRATED VERTEX OPERATOR IS A MUST FOR SUFFICIENTLY HIGHER POINT  
    TREE LEVEL AND ALL LOOP LEVEL AMPLITUDES 

 VERTEX OPERATOR FOR MASSLESS OPEN STRING STATES IN UNINTEGRATED  
    AND INTEGRATED FORM ARE KNOWN 

 THE ONLY KNOWN MASSIVE VERTEX OPERATOR IN PURE SPINOR FORMALISM IS 
    AT FIRST EXCITED LEVEL OF OPEN STRING  (Mass)2 =

1

↵0

 WE SHALL PRESENT THE INTEGRATED VERTEX FORM OF THE ABOVE VERTEX     
     

 WE SHALL SEE THAT OUR CONSTRUCTION SEEMS TO BE GENERALISABLE 
    TO HIGHER MASS LEVELS 

 

UNINTEGRATED



NOTATIONS 

O =: B(⇧m, d↵, @
n
✓, J,N

mn
,�)S(✓↵, Xm) :

“BASIS” 
(INDICES SUPPRESSED HERE)

SUPERFIELD 
(INDICES SUPPRESSED HERE)

↵,�... SPINOR INDICES

a, b...  SPACETIME (VECTOR) INDICES



SIMPLE EXAMPLE

SO, HOW DO WE SOLVE                     ?QU = @V

CONSIDER NX

i

B̂ici = 0

ALONG WITH

where, {B̂i} 2 V

Ii(B̂1, B̂2, · · · , B̂N ) = 0 ; i = 0, 1, 2, · · · , p

  QUESTION: WHAT VALUES OF             SOLVES                     ?{ci}
NX

i

B̂ici = 0

 ANSWER:  DEPENDS ON NUMBERS OF CONSTRAINTS.

CONSTRAINTS



❖  IF p = 0 THEN ci = 0 8 i

❖  IF p 6= 0 THEN WE HAVE 2+1 OPTIONS FOR SOLVING FOR  {ci}

Ii(B̂1, B̂2, · · · , B̂N ) = 0 ; i = 0, 1, 2, · · · , p

COLLECT ALL THE COEFFICIENTS OF LEFTOVER 

AND SET THEIR COEFFICIENTS TO 0 AND SOLVE FOR  {ci}

✦OPTION 2: INTRODUCE LAGRANGE MULTIPLIERS  {Ki|i = 1, 2, · · · , p}

✦  OPTION 1: ELIMINATE SOME           IN FAVOUR OF OTHERS USING {B̂a}

COLLECT COEFFICIENTS OF ALL  THE                    {B̂i}

AND SET THEIR COEFFICIENTS TO 0 AND SOLVE FOR  {ci}

NX

i

B̂ici +
pX

j=1

IjKj = 0

{B̂j |j 6= a}



OUR CASE

FEATURES

✦ OPTION 3 USE OPTION 1 AND OPTION 2 IN A MIXED WAY.  

 THERE ARE CONSTRAINTS.

 CONSTRAINTS NOT KNOWN IN LITERATURE DISCOVER THEM

NX

i

B̂ici +
pX

j=1

IjKj = 0

SUPERFIELDS

PURE SPINOR WORLDSHEET  
OPERATORS



Xm , ⇧m

✓↵

p↵ , d↵

�↵

w↵

Nmn , J

Field Conformal 
Weight

Spacetime Nature Grassman
Nature

Ghost 
Number

0,1 Vector Even 0

0 Left Weyl Spinor Odd 0

1 Right Weyl Spinor Odd 0

0 Left Weyl Spinor Even 1

1 Right Weyl Spinor Even -1

1 Rank 2 Tensor, Scalar Even 0

Worldsheet and Spacetime nature of all variables

BRIEF REVIEW

  BRST operator

2 Brief review of pure spinor formalism

In this section, we briefly recall some of the results of the minimal pure spinor formalism.

For details, we refer the reader to original papers. The purpose of this section is to mainly

introduce the fields which are used in the formalism. After this, we shall recall some of the

details of the first massive vertex operator [1] which are relevant for our purpose.

2.1 Some general results

As mentioned earlier, the pure spinor formalism is a formalism to quantize superstrings co-

variantly. Unlike RNS and Green-Schwarz formalisms, all the underlying symmetries, namely

Poincare and supersymmetry remain manifest in this formalism. Restricting to open strings,

the world-sheet CFT in the flat spacetime is described by the action

S =
2

↵0

Z
d2z

✓
1

2
@Xm@̄Xm + p↵@̄✓

↵ � w↵@̄�
↵

◆
(2.1)

where, m = 0, 1, , · · · , 9 and ↵ = 1, · · · , 16.

The conformal weights of the fields p↵, w↵, ✓↵ and �↵ are 1, 1, 0, 0 respectively. Moreover,

the field p↵ is a left handed Majorana-Weyl spinor whereas ✓↵ is right handed Majorana Weyl

spinor3. The fields w↵ and �↵ are bosonic objects which transform as left and right handed

Majorana Weyl spinor respectively under the Lorentz transformation (hence, violating the

spin-statistics theorem). The field �↵ satisfies an important constraint, the so called pure

spinor constraint

�↵�m
↵��

� = 0 (2.2)

where, �m are the 16⇥ 16 gamma matrices, described in detail in the appendix B.

The ghost Lorentz and ghost number currents Nmn and J are given by

Nmn =
1

2
w↵(�

mn)↵��
� , J = w↵�

↵ (2.3)

The physical spectrum of the theory corresponds to the cohomology of the following BRST

operator

Q =

I
dz �↵(z)d↵(z) (2.4)

3All the left-handed spinors carry lower spinor indices whereas all the right-handed spinors carry upper
spinor indices.
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 FIRST EXCITED STATE OF OPEN STRING FORMS A SPIN 2 MULTIPLET COMPRISING

 s↵ =  s↵|✓=0 gmn = Gmn|✓=0 bmnp = Bmnp|✓=0

44 + 84 bosonic d.o.f128 fermionic d.o.f

UNINTEGRATED VERTEX

 IN THE UNINTEGRATED VERTEX THESE APPEAR AS

and the fact that the matter and the ghost sector fields do not have any non trivial OPE

between them.

After briefly reviewing the basics, we now turn to the first massive unintegrated vertex

operator [22, 23]. There are 128 fermionic and 128 bosonic degrees of freedom at the first

massive level of the open string spectrum. The fermionic degrees of freedom are contained

in a spin-3/2 field  m↵ whereas the bosonic degrees of freedom are contained in a traceless

symmetric tensor gmn and a 3-form field bmnp. These fields are demanded to satisfy

@m m↵ = 0 ; �m↵� m� = 0 ; @mbmnp = 0 ; ⌘mngmn = 0 ; @mgmn = 0 (2.12)

These constraints ensure that the number of independent components in the fields  m�, bmnp

and gmn are 128, 84 and 44 respectively. These fields form a massive spin-2 supermultiplet in

10 dimensions. To describe the system in a supersymmetric invariant manner, we introduce

basic superfields  m↵, Bmnp and Gmn whose theta independent components are  m↵, bmnp and

gmn respectively. The higher components of these basic superfields contain the same physical

fields in a more involved manner.

At the first mass level, the unintegrated vertex operator of the open string is given by [23]

V = : @✓��↵B↵� : + : d��
↵C�

↵ : + : ⇧m�↵Hm↵ : + : Nmn�↵F↵mn : (2.13)

where, the superfields appearing in the above expression are given in terms of the basic super-

fields Bmnp and  m↵ to be [23]

Hs↵ = �72 s↵ =
3

7
(�mn) �

↵ D�Bmns , Cmnpq =
1

2
@[mBnpq] ,

F↵mn =
1

8

✓
7@[mHn]↵ + @q(�q[m)

�
↵ Hn]�

◆
(2.14)

The normal ordering : : is defined as

: AB : (z) ⌘ 1

2⇡i

I

z

dw

w � z
A(w)B(z) (2.15)

where, A and B are any two operators and the contour surrounds the point z.

The basic superfields at the first massive level, namely, Bmnp, m↵ and Gmn satisfy the

superspace equations4 [22]

D↵Gsm = 16 @p(�p(s m))↵ (2.16)

4To go from position to momentum space and vice versa, we use the convention @m ! ikm and km !
�i@m. We shall do calculations mostly in the momentum space but express the final result in the position
space using this rule.
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After briefly reviewing the basics, we now turn to the first massive unintegrated vertex

operator [22, 23]. There are 128 fermionic and 128 bosonic degrees of freedom at the first

massive level of the open string spectrum. The fermionic degrees of freedom are contained

in a spin-3/2 field  m↵ whereas the bosonic degrees of freedom are contained in a traceless

symmetric tensor gmn and a 3-form field bmnp. These fields are demanded to satisfy

@m m↵ = 0 ; �m↵� m� = 0 ; @mbmnp = 0 ; ⌘mngmn = 0 ; @mgmn = 0 (2.12)

These constraints ensure that the number of independent components in the fields  m�, bmnp

and gmn are 128, 84 and 44 respectively. These fields form a massive spin-2 supermultiplet in

10 dimensions. To describe the system in a supersymmetric invariant manner, we introduce

basic superfields  m↵, Bmnp and Gmn whose theta independent components are  m↵, bmnp and

gmn respectively. The higher components of these basic superfields contain the same physical

fields in a more involved manner.

At the first mass level, the unintegrated vertex operator of the open string is given by [23]

V = : @✓��↵B↵� : + : d��
↵C�

↵ : + : ⇧m�↵Hm↵ : + : Nmn�↵F↵mn : (2.13)

where, the superfields appearing in the above expression are given in terms of the basic super-

fields Bmnp and  m↵ to be [23]

Hs↵ = �72 s↵ =
3

7
(�mn) �

↵ D�Bmns , Cmnpq =
1

2
@[mBnpq] ,

F↵mn =
1

8

✓
7@[mHn]↵ + @q(�q[m)

�
↵ Hn]�

◆
(2.14)

The normal ordering : : is defined as

: AB : (z) ⌘ 1

2⇡i

I

z

dw

w � z
A(w)B(z) (2.15)

where, A and B are any two operators and the contour surrounds the point z.

The basic superfields at the first massive level, namely, Bmnp, m↵ and Gmn satisfy the

superspace equations4 [22]

D↵Gsm = 16 @p(�p(s m))↵ (2.16)

4To go from position to momentum space and vice versa, we use the convention @m ! ikm and km !
�i@m. We shall do calculations mostly in the momentum space but express the final result in the position
space using this rule.
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RESULT

The inclusion of I ensures that all operator basis constructed in step 1 now can be treated

as linearly independent. Instead of introducing the Lagrange multipliers, one can also

directly eliminate some basis operators in favor of others.

• Step 5 : Express each of the arbitrary superfields in U as a generic linear combination of

 m↵, Bmnp andGmn and their space time derivatives. The correct number of terms in each

ansatz can be determined by using the representation theory of SO(9) which is the little

group for the massive states in 10 dimensions. The number of times  m↵, Bmnp and Gmn

will appear in a given ansatz is same as the number of 128, 84 and 44 representations

of SO(9) respectively in the superfield. This can be figured out by analyzing the index

structure of the superfield in the rest frame.

• Step 6 : Substitute the ansatz of step 5 in the equations obtained in step 4. These

lead to a set of linear algebraic equations for the unknown co-e�cients appearing in the

ansatz.

• Step 7 : Solve these linear equations. Plugging the solutions back allows us to express

U completely in terms of the superfields that describe the massive supermultiplet.

Following this procedure, the final form of the first massive integrated vertex operator is

obtained to be

U = : ⇧m⇧nFmn : + : ⇧md↵F
↵

m : + : ⇧m@✓↵Gm↵ : + : ⇧mNpqFmpq :

+ : d↵d�K
↵� : + : d↵@✓

�F ↵
� : + : d↵N

mnG↵
mn : + : @✓↵@✓�H↵� :

+ : @✓↵NmnHmn↵ : + : NmnNpqGmnpq : (3.20)

where, the superfields appearing in (3.20) are given in position space by

Fmn = �18

↵0Gmn , F ↵
m =

288

↵0 (�
r)↵�@r m� , Gm↵ = �432

↵0  m↵

Fmpq =
12

(↵0)2
Bmpq �

36

↵0 @[pGq]m , K↵� = � 1

(↵0)2
�↵�
mnpB

mnp

F ↵
� = � 4

↵0 (�
mnpq)↵ �@mBnpq , G↵

mn =
48

(↵0)2
�↵�
[m n]� +

192

↵0 �
↵�
r @r@[m n]�

H↵� =
2

↵0�
mnp
↵� Bmnp , Hmn↵ = �576

↵0 @[m n]↵ � 144

↵0 @
q(�q[m)

�
↵  n]�

Gmnpq =
4

(↵0)2
@[mBn]pq +

4

(↵0)2
@[pBq]mn �

12

↵0 @[p@[mGn]q] (3.21)
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WHERE

will appear in a given ansatz is same as the number of 128, 84 and 44 representations

of SO(9) respectively in the superfield. This can be figured out by analyzing the index

structure of the superfield in the rest frame.

• Step 6 : Substitute the ansatz of step 5 in the equations obtained in step 4. These

lead to a set of linear algebraic equations for the unknown co-e�cients appearing in the

ansatz.

• Step 7 : Solve these linear equations. Plugging the solutions back allows us to express

U completely in terms of the superfields that describe the massive supermultiplet.

Following this procedure, the final form of the first massive integrated vertex operator is

obtained to be

U = : ⇧m⇧nFmn : + : ⇧md↵F
↵

m : + : ⇧m@✓↵Gm↵ : + : ⇧mNpqFmpq :

+ : d↵d�K
↵� : + : d↵@✓

�F ↵
� : + : d↵N

mnG↵
mn : + : @✓↵@✓�H↵� :

+ : @✓↵NmnHmn↵ : + : NmnNpqGmnpq : (3.20)

where, the superfields appearing in (??) are given in position space by

Fmn = �18

↵0Gmn , F ↵
m =

288

↵0 (�
r)↵�@r m� , Gm↵ = �432

↵0  m↵

Fmpq =
12

(↵0)2
Bmpq �

36

↵0 @[pGq]m , K↵� = � 1

(↵0)2
�↵�
mnpB

mnp

F ↵
� = � 4

↵0 (�
mnpq)↵ �@mBnpq , G↵

mn =
48

(↵0)2
�↵�
[m n]� +

192

↵0 �
↵�
r @r@[m n]�

H↵� =
2

↵0�
mnp
↵� Bmnp , Hmn↵ = �576

↵0 @[m n]↵ � 144

↵0 @
q(�q[m)

�
↵  n]�

Gmnpq =
4

(↵0)2
@[mBn]pq +

4

(↵0)2
@[pBq]mn �

12

↵0 @[p@[mGn]q]

(3.21)

It can be explicitly verified that the integrated vertex operator constructed here is a primary

operator with respect to the stress energy tensor of the theory5. The 3rd and the 4th order poles

of the OPE between the total stress tensor T and the vertex operator U given in (??) vanish

identically for the solution given in (??) on using the conditions (??). The full computation,

5We thank Nathan Berkovits for raising this issue.
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CONSTRUCTION

U = : @2✓↵C↵ : + : @⇧m
Cm : + : @d↵E

↵ : + : (@J)C : + : @Nmn
Cmn :

+ : ⇧m⇧n
Fmn : + : ⇧m

d↵F
↵

m : + : ⇧m
N

pq
Fmpq : + : ⇧m

JFm : + : ⇧m
@✓

↵
Gm↵ :

+ : d↵d�K
↵� : + : d↵N

mn
G

↵
mn : + : d↵JF

↵ : + : d↵@✓
�
F

↵
� :

+ : Nmn
N

pq
Gmnpq : + : Nmn

JPmn : + : Nmn
@✓

↵
Hmn↵ :

+ : JJH : + : J@✓↵H↵ : + : @✓↵@✓�H↵� :

(4.28) general_U

The terms in the first line involve derivatives of fields to produce objects of conformal weight

2. The terms in the last 4 lines involve products of fields with conformal weights 1 to produce

objects of conformal weight 2. Note that the superfields contain the expansion in ✓↵. Hence,

there are no explicit ✓↵ dependent terms in the above expression.

To proceed further, we note that all of the superfields in the above expression must be

expressible in terms of the basic superfields Bmnp, Gmn and  m↵. Moreover, due to the equa-

tions (2.13)-(2.16), it follows that the relation between the superfields in (4.28) and the basic

superfields can be written without using the covariant derivative. By comparing the theta

independent components, we can convince ourselves that all the superfields whose theta inde-

pendent components can not contain the physical fields bmnp, gmn or  m↵ must be zero. Thus,

we can write down the most general form for the superfields as follows

C↵ = Cm = E
↵ = C = Cmn = Fm = F

↵ = Pmn = H = H↵ = 0

Fmn = f1Gmn , Gm↵ = g1 m↵

K
↵� = a �

↵�
mnpB

mnp
, H↵� = h1�

mnp
↵� Bmnp

F
↵
� = f5(�

mnpq)↵ �kmBnpq , F
↵
m = f2k

r(�r)
↵� m�

Fmpq = f3Gm[pkq] + f4Bmpq , G
�
pq = g2�

��
[p  q]� + g3k

r
�
��
r k[p q]�

Hmn↵ = h2 k[m n]↵ + h3k
q(�q[m)

�
↵  n]�

Gmnpq = g4k[mBn]pq + g5k[pBq]mn + g6k[mGn][pkq] + g7 ⌘[m[pGq]n] (4.29) Group_theory_U
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STEP 1
WRITE DOWN THE MOST GENERAL OPERATOR CONSTRUCTED OUT OF 

 BASIS WITH CONFORMAL WEIGHT 2 AND GHOST NUMBER 0. 

NO �↵

{⇧m, d↵, @✓
↵, Nmn, J}

PRODUCTS AND WORLDSHEET DERIVATIVE  
      OF CONFORMAL WEIGHT 1 BASIS

QU = @V



STEP 2 
RULE OUT SUPERFIELDS THAT CANNOT HAVE THE PHYSICAL DEGREE OF 

FREEDOM BY DOING REST FRAME ANALYSIS 

EXAMPLE

C↵ = Cm = E
↵ = C = Cmn = Fm = F

↵ = Pmn = H = H↵ = 0

C↵

16

Cm

C0 Ci

0 16

Cmn

C0i Cij

9 36

✦ A SUPERFIELD WITH ONE INDEX VANISHES.  

✦ A SUPERFIELD WITH TWO ANTI-SYMMETRIC VECTOR INDICES VANISHES.  



STEP 3 COMPUTE QU 

objects of conformal weight 2. Note that the superfields contain the expansion in ✓↵. Hence,

there are no explicit ✓↵ dependent terms in the above expression.

To set up the equation of motion (??), we now need to compute QU . Before stating the

result, we note that the superfields appearing in (??) must be expressible in terms of the basic

superfields Bmnp, Gmn and  m↵. Moreover, we shall argue below that the superfields whose

theta independent components can’t contain the physical fields bmnp, gmn and  m↵ must be

zero. These superfields are C↵, Cm, E↵, C, Cmn, Fm, F ↵, Pmn, H and H↵. Keeping this in mind,

the action of the BRST operator Q on the 10 non zero terms of (??) can be computed to be7

1. ⇧m⇧nFmn

Q (: ⇧m⇧nFmn :) =
↵0

2


: ⇧m⇧n�↵D↵Fmn : + : ⇧m(�n↵�)@✓

��↵
⇣
Fmn + Fnm

⌘
:

�

2. ⇧md↵F ↵
m

Q
�
: ⇧md�F

�
m :

�
= �↵

0

2

h
: ⇧md��

↵D↵F
�

m : + : d�(�
m
↵�)@✓

��↵F �
m :

+ : ⇧m(�n↵�)⇧n�
↵F �

m :
i
� 1

2

✓
↵0

2

◆2

@2�↵�m↵�F
�

m

+
(↵0)2

2
: ⇧m(�n↵�)@�

↵@nF
�

m :

3. ⇧mNpqFmpq

Q (: ⇧mNpqFmpq :) =
↵0

2

h
: ⇧mNpq�↵D↵Fmpq : + : @✓�Npq(�m↵�)�

↵Fmpq :
i

�↵
0

4
: ⇧md↵(�

pq)↵��
�Fmpq : �

1

2

✓
↵0

2

◆2

: ⇧m@��(�pq)↵�D↵Fmpq :

� 1

2

✓
↵0

2

◆2 h
@2✓����m↵�(�

pq)↵�Fmpq + @✓�@���m↵�(�
pq)↵�Fmpq

i

4. ⇧m@✓�Gm�

Q
�
: ⇧m@✓�Gm� :

�

= �↵
0

2
: ⇧m@✓��↵D↵Gm� : +

↵0

2
: @✓�@✓��↵�m↵�Gm� : +

↵0

2
: ⇧m@��Gm� :

7These computations were also checked using the Mathematica package OPEDefs [?].
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objects of conformal weight 2. Note that the superfields contain the expansion in ✓↵. Hence,

there are no explicit ✓↵ dependent terms in the above expression.

To set up the equation of motion (??), we now need to compute QU . Before stating the

result, we note that the superfields appearing in (??) must be expressible in terms of the basic

superfields Bmnp, Gmn and  m↵. Moreover, we shall argue below that the superfields whose

theta independent components can’t contain the physical fields bmnp, gmn and  m↵ must be

zero. These superfields are C↵, Cm, E↵, C, Cmn, Fm, F ↵, Pmn, H and H↵. Keeping this in mind,

the action of the BRST operator Q on the 10 non zero terms of (??) can be computed to be7

1. ⇧m⇧nFmn

Q (: ⇧m⇧nFmn :) =
↵0

2


: ⇧m⇧n�↵D↵Fmn : + : ⇧m(�n↵�)@✓

��↵
⇣
Fmn + Fnm

⌘
:

�

2. ⇧md↵F ↵
m

Q
�
: ⇧md�F

�
m :

�
= �↵

0

2

h
: ⇧md��

↵D↵F
�

m : + : d�(�
m
↵�)@✓

��↵F �
m :

+ : ⇧m(�n↵�)⇧n�
↵F �

m :
i
� 1

2

✓
↵0

2

◆2

@2�↵�m↵�F
�

m

+
(↵0)2

2
: ⇧m(�n↵�)@�

↵@nF
�

m :

3. ⇧mNpqFmpq

Q (: ⇧mNpqFmpq :) =
↵0

2

h
: ⇧mNpq�↵D↵Fmpq : + : @✓�Npq(�m↵�)�

↵Fmpq :
i

�↵
0

4
: ⇧md↵(�

pq)↵��
�Fmpq : �

1

2

✓
↵0

2

◆2

: ⇧m@��(�pq)↵�D↵Fmpq :

� 1

2

✓
↵0

2

◆2 h
@2✓����m↵�(�

pq)↵�Fmpq + @✓�@���m↵�(�
pq)↵�Fmpq

i

4. ⇧m@✓�Gm�

Q
�
: ⇧m@✓�Gm� :

�

= �↵
0

2
: ⇧m@✓��↵D↵Gm� : +

↵0

2
: @✓�@✓��↵�m↵�Gm� : +

↵0

2
: ⇧m@��Gm� :

7These computations were also checked using the Mathematica package OPEDefs [?].
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5. d↵d�K↵�

Q
�
: d↵d�K

↵� :
�

=
↵0

2
: d�d��

↵D↵K
�� : �↵0

2
: ⇧md�(x)�

↵�m
↵�

⇥
K��(z)�K��

⇤
:

+
↵02

2
: d�@�

↵�m
↵�@m

⇥
K�� �K��

⇤
: +

✓
↵0

2

◆2

@✓�@�↵�m���
m
↵�K

��

+

✓
↵0

2

◆2

: �n�⇢@
2✓⇢(x)�↵(z)�n

↵�K
��

6. d�NmnG�
mn

Q
�
: d�N

mnG�
mn :

�

=
↵0

2


� : d�N

mn�↵D↵G
�
mn : � : ⇧pNmn�↵�p↵�G

�
mn : +↵0 : Nmn@�↵�p↵�@

pG�
mn :

+
↵0

4
(�p�

mn)��
⇣
: @⇧p��G�

mn+ : ⇧p@��G�
mn : �↵0

2
: @2��@pG�

mn :
⌘

+
(�mn)↵�

2

⇣
: d�d↵�

�G�
mn : (z) +

↵0

2
: d�@�

�D↵G
�
mn :

⌘�
(4.25)

7. d�@✓�F
�
�

Q
⇣
: d�@✓

�F �
� :
⌘

=
↵0

2

h
: d�@✓

��↵D↵F
�
� : � : d�@�

↵F �
↵ :

i
�↵0

2
: ⇧m@✓

��↵�m
↵�F

�
� :

+
(↵0)2

2
: @✓�@�↵�m

↵�@mF
�
� :

8. NmnNpqGmnpq

Q (: NmnNpqGmnpq :)

=

✓
↵0

4

◆2  8

↵0 : N
mnNpq�↵D↵Gmnpq : �

4

↵0 : d↵N
pq��(�mn)↵�Gmnpq :

�2 : Npq@��(�mn)↵�D↵Gmnpq : +(�mn�pq)↵�
�
: @d↵�

�Gmnpq : + : d↵@�
�Gmnpq :

�

� 4

↵0 : d↵N
mn��(�pq)↵�Gmnpq : �2 : Nmn@��(�pq)↵�D↵Gmnpq :

+
↵0

4

⇣
@2��D↵(�

mn�pq)↵�Gmnpq

⌘�
(4.26)

9. Nmn@✓�Hmn�

Q
�
: @✓�NmnHmn� :

�

=
↵0

2


� : @✓�Nmn�↵D↵Hmn� : + : Nmn@��Hmn� : �↵0

8
: @2�↵(�mn)�↵Hmn� :

�1

2
: d↵@✓

���(�mn)↵�Hmn� : +
↵0

4
: @✓�@��(�mn)↵�D↵Hmn� :

�
(z) (4.27)
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STEP 4 COMPUTE           USING            @V

8. NmnNpqGmnpq

Q (: NmnNpqGmnpq :)

=

✓
↵0

4

◆2  8

↵0 : N
mnNpq�↵D↵Gmnpq : �

4

↵0 : d↵N
pq��(�mn)↵�Gmnpq :

�2 : Npq@��(�mn)↵�D↵Gmnpq : +(�mn�pq)↵�
�
: @d↵�

�Gmnpq : + : d↵@�
�Gmnpq :

�

� 4

↵0 : d↵N
mn��(�pq)↵�Gmnpq : �2 : Nmn@��(�pq)↵�D↵Gmnpq :

+
↵0

4

⇣
@2��D↵(�

mn�pq)↵�Gmnpq

⌘�
(4.26)

9. Nmn@✓�Hmn�

Q
�
: @✓�NmnHmn� :

�

=
↵0

2


� : @✓�Nmn�↵D↵Hmn� : + : Nmn@��Hmn� : �↵0

8
: @2�↵(�mn)�↵Hmn� :

�1

2
: d↵@✓

���(�mn)↵�Hmn� : +
↵0

4
: @✓�@��(�mn)↵�D↵Hmn� :

�
(z) (4.27)

10. @✓�@✓�H��

Q
�
: @✓�@✓�H�� :

�
=

↵0

2

h
: @✓�@✓��↵D↵H�� : � : @✓�@��

�
H�� �H��

�
:
i

The BRST equation of motion also involves the world-sheet derivative of the unintegrated

vertex operator, namely, @V . Making use of the equation (2.13) and the operator identity8

@f = @✓↵D↵f + 2⇧m @f

@Xm
(4.28)

where f is an arbitrary function of X and ✓, we obtain

@V = : @✓�@�↵B↵� : + : ⇧m@�↵Hm↵ : + : @2✓↵��
�
B�↵ + ↵0�m

�↵@mC
�
�

�
:

+ : @✓�@✓��↵D�B↵� : + : ⇧m@✓��↵
�
2@mB↵� +D�Hm↵

�
: + : @d��

↵C�
↵ :

+ : d�@�
↵C�

↵ : + : d�@✓
��↵D�C

�
↵ : + : 2⇧md��

↵@mC
�
↵ : + : @⇧m�↵Hm↵ :

+ : 2⇧m⇧n�↵@nHm↵ : + : @Nmn�↵F↵mn : + : Nmn@�↵F↵mn :

+ : @✓�Nmn�↵D�F↵mn : + : 2⇧pNmn�↵@p F↵mn :

(4.29)

8 Note that the factor of 2 in the second term in the right hand side of equation (4.28) is present since we
are working with the open string. It will be absent for the closed strings.
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@S(X, ✓) = 2⇧m@mS(X, ✓) + @✓↵D↵S(X, ✓)

WORLDSHEET 
DERIVATIVE

SPACETIME 
DERIVATIVE

QU = @V

SUPERCOVARIANT  
DERIVATIVE



where, we have used

: 2d�⇧
m�↵@mC

�
↵ : = : 2⇧md��

↵@mC
�
↵ : +↵0 : �m

��@
2✓��↵@mC

�
↵ :

We now need to equate QU and @V . A convenient way to do this is to compare the same

basis elements in both sides. For the conformal weight 2 and ghost number 1 pure spinor

objects (which appear in QU and @V ), naively, we have following 26 basis elements

⇧m⇧n�↵ , ⇧md↵�
� , ⇧m@✓��� , ⇧mJ�↵ , ⇧mNnp�↵ , @⇧m�↵ , ⇧m@�↵

d↵d��
� , d↵@✓

��� , d↵J�
↵ , d↵N

mn�↵ , @d↵�
� , d↵@�

�

@✓↵@✓��� , @✓↵J�� , @✓↵Nmn�↵ , @2✓↵�� , @✓↵@��

NmnNpq�↵ , NmnJ�↵ , @Nmn�↵ , Nmn@�↵

JJ�↵ , @J�↵ , J@�↵

@2�↵ (4.30)

As mentioned earlier, all of these basis elements are not independent. There are non trivial

relations among some of these bases. We turn to these constraint relations between the basis

elements in the next subsection.

4.2 Constraint Identities

As mentioned in section 2, due to pure spinor constraint, the Lorentz current Nmn and the

ghost current J satisfy the identity [23]

: Nmn�↵ : (z)(�m)↵� �
1

2
: J�↵ : (z)(�n)↵� � ↵0�n

↵�@�
↵(z) = 0 (4.31)

This constraint is relevant if one is interested in the quantities involving conformal weight 1

and ghost number 1. However, in the expressions for QU and @V , we encounter quantities

with conformal weight 2 and ghost number 1. For this case, there are several identities which

can be obtained from the above identity (2.4) by taking the OPE of this with the objects of

conformal weight 1 and demanding the normal order terms in the OPE to vanish (the pole

terms of the OPE vanish automatically as expected). Since the derivative and the normal

ordering commute, the world-sheet derivative of (4.31) also gives a constraint. We list these
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 NOTE THAT OPERATION WITH BRST CHARGE AND WORLDSHEET DERIVATIVE 

     GIVES RISE TO 26 BASIS ELEMENTS

CONFORMAL WEIGHT 2, GHOST NUMBER 1



STEP 5 ADD SPECIAL ZEROS OF THE FORM 
6X

A=1

IAK
A

constraint identities below.

(I1)
n
� ⌘ : NmnJ�↵ : (�m)↵� �

1

2
: JJ�↵ : (�n)↵� � ↵0 : J@�↵ : �n

↵� = 0 (4.32)

(I2)
mnq
� ⌘ : NmnNpq�↵ : (�p)↵� �

1

2
: NmnJ�↵ : (�q)↵� � ↵0 : Nmn@�↵ : �q

↵� = 0(4.33)

(I3)
n
�� ⌘ : d�N

mn�↵ : (�m)↵� �
1

2
: d�J�

↵ : (�n)↵� � ↵0 : d�@�
↵ : �n

↵� = 0 (4.34)

(I4)
pn
� ⌘ : ⇧pNmn�↵ : (�m)↵� �

1

2
: ⇧pJ�↵ : (�n)↵� � ↵0 : ⇧p@�↵ : �n

↵� = 0 (4.35)

(I5)
�n
� ⌘ : @✓�Nmn�↵ : (�m)↵� �

1

2
: @✓�J�↵ : (�n)↵� � ↵0 : @✓�@�↵ : �n

↵� = 0 (4.36)

The above 5 identities follow from taking the OPE of (4.31) with the object of conformal

weight one, namely J,Nmn, d�,⇧p and @✓� respectively. The identity which can be obtained

by taking the derivative of (4.31) is given by

(I6)
n
� ⌘ : @Nmn�↵ : (�m)↵�+ : Nmn@�↵ : (�m)↵� �

1

2
: @J�↵ : (�n)↵� �

1

2
: J@�↵ : (�n)↵�

� ↵0�n
↵�@

2�↵ = 0 (4.37)

Apart from these, there are two more constraint identities which follow from the OPEs given

in section 2. The OPE of d↵ with d� implies

: d↵d� : + : d�d↵ : +
↵0

2
@⇧t(�t)↵� = 0 (4.38)

Similarly, the OPE of Nmn with Npq implies

: NmnNpq : � : NpqNmn : = �↵0

2

h
⌘np@Nmq � ⌘nq@Nmp � ⌘mp@Nnq + ⌘mq@Nnp

i
(4.39)

One way to think about these two identities is to note that we are working with a given ordering

of the pure spinor variables inside the normal ordering. However, for : d↵d� : and : NmnNpq :,

there is no preferred ordering. The above two identities (4.38) and (4.39) are a reflection of

this fact9.

For later purpose, we multiply (4.38) with 5-form �↵�
mnpqr to obtain

�↵�
mnpqr

⇣
: d↵d� : + : d�d↵ : +

↵0

2
@⇧t(�t)↵�

⌘
= 0 =) �↵�

mnpqr : d↵d� : = 0 (4.40)

9Note that there are OPE between ⇧m and ⇧n as well as between J and J . However, no pure spinor fields
appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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constraint identities below.

(I1)
n
� ⌘ : NmnJ�↵ : (�m)↵� �

1

2
: JJ�↵ : (�n)↵� � ↵0 : J@�↵ : �n

↵� = 0 (4.32)

(I2)
mnq
� ⌘ : NmnNpq�↵ : (�p)↵� �

1

2
: NmnJ�↵ : (�q)↵� � ↵0 : Nmn@�↵ : �q

↵� = 0(4.33)

(I3)
n
�� ⌘ : d�N

mn�↵ : (�m)↵� �
1

2
: d�J�

↵ : (�n)↵� � ↵0 : d�@�
↵ : �n

↵� = 0 (4.34)

(I4)
pn
� ⌘ : ⇧pNmn�↵ : (�m)↵� �

1

2
: ⇧pJ�↵ : (�n)↵� � ↵0 : ⇧p@�↵ : �n

↵� = 0 (4.35)

(I5)
�n
� ⌘ : @✓�Nmn�↵ : (�m)↵� �

1

2
: @✓�J�↵ : (�n)↵� � ↵0 : @✓�@�↵ : �n

↵� = 0 (4.36)

The above 5 identities follow from taking the OPE of (4.31) with the object of conformal

weight one, namely J,Nmn, d�,⇧p and @✓� respectively. The identity which can be obtained

by taking the derivative of (4.31) is given by

(I6)
n
� ⌘ : @Nmn�↵ : (�m)↵�+ : Nmn@�↵ : (�m)↵� �

1

2
: @J�↵ : (�n)↵� �

1

2
: J@�↵ : (�n)↵�

� ↵0�n
↵�@

2�↵ = 0

(4.37)

Apart from these, there are two more constraint identities which follow from the OPEs given

in section 2. The OPE of d↵ with d� implies

: d↵d� : + : d�d↵ : +
↵0

2
@⇧t(�t)↵� = 0 (4.38)

Similarly, the OPE of Nmn with Npq implies

: NmnNpq : � : NpqNmn : = �↵0

2

h
⌘np@Nmq � ⌘nq@Nmp � ⌘mp@Nnq + ⌘mq@Nnp

i
(4.39)

One way to think about these two identities is to note that we are working with a given ordering

of the pure spinor variables inside the normal ordering. However, for : d↵d� : and : NmnNpq :,

there is no preferred ordering. The above two identities (4.38) and (4.39) are a reflection of

this fact9.

For later purpose, we multiply (4.38) with 5-form �↵�
mnpqr to obtain

�↵�
mnpqr

⇣
: d↵d� : + : d�d↵ : +

↵0

2
@⇧t(�t)↵�

⌘
= 0 =) �↵�

mnpqr : d↵d� : = 0 (4.40)

9Note that there are OPE between ⇧m and ⇧n as well as between J and J . However, no pure spinor fields
appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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where, we have used the fact that the trace of product of 5-form and 1-form is zero and the

5-form is symmetric in its spinor indices.

For solving the equations of motion, we shall need to take into account all of these constraint

relations between the pure spinor variables.

4.3 Setting up the Equations

We shall now equate QU and @V and solve the resulting equations of motion. As mentioned

earlier, a convenient way to do this is to equate the terms with the same basis elements taking

into account the constraint identities given above.

To take into account the constraint identities, we have two options - eliminate some basis in

terms of others or introduce Lagrange multipliers. We shall make use of both of these options.

We shall use the elimination method for taking care of (4.38) and (4.39) constraints. More

specifically, we shall eliminate the basis involving @⇧m in favour of the basis involving d↵d�

and similarly we shall eliminate the anti-symmetric part of the basis involving NmnNpq (in

simultaneous m $ p and n $ q exchange) in the favor of basis involving @Nmn. On the other

hand, we shall introduce Lagrange multipliers for the six constraints (4.32)-(4.37) which follow

from the pure spinor constraint and involve the pure spinor ghost. This means that we add a

very specific zero to QU = @V equation so that we have

QU = @V +
6X

a=1

IaKa (4.41)

The IaKa involve contraction of the six identities (4.32)-(4.37) with appropriate Lagrange

multiplier superfields. We denote these arbitrary superfields by Ki (i = 1, · · · 6). Thus,
6X

a=1

IaKa ⌘ (I1)
n
�(K1)

�
n + (I2)

mnq
� (K2)

�
mnq + (I3)

n
��(K3)

��
n + (I4)

pn
� (K4)

�
pn

+ (I5)
�n
� (K5)

�
�n + (I6)

n
�(K6)

�
n (4.42)

The Lagrange multiplier superfields Ki will also be determined in terms of the basic superfields

Bmnp, Gmn and  m↵ as we shall see.

We can now write down the equations of motion. Using equations (4.42), (4.32)-(4.37) and

the expressions of QU and @V , we obtain the following equations after comparing the same

basis elements in both sides of (4.41)

1. ⇧m⇧n�↵

↵0

2


D↵Fmn � �n↵�F

�
m

�
= 2@nHm↵
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WHERE, 



STEP 6 COLLECT ALL THE TERMS WITH SAME BASIS

1. ⇧m⇧n�↵

↵0

2


D↵Fmn � �n↵�F

�
m

�
= 2@nHm↵

2. ⇧m@✓��↵

↵0

2


�n
↵�(Fmn + Fnm)�D↵Gm���m

↵�F
�
�

�
= 2@mB↵� +D�Hm↵

3. d↵@✓���

↵0

2


��m

��F
↵

m +D�F
↵
� �

1

2
(�mn)↵�Hmn�

�
= D�C

↵
�

4. ⇧md��↵

↵0

2


�D↵F

�
m � 1

2
(�pq)�↵Fmpq � �m

↵�

⇣
K�� �K��

⌘�
= 2@mC

�
↵

5. @✓↵@✓���

↵0

2


�m
�[↵Gm�] +D�H↵�

�
= D[�B|�|↵]

6. @⇧m�↵

(↵0)2

8
(�m�

pq)�↵G
�
pq = Hm↵

7. d↵d���

↵0

2


D�K

↵� +
1

2
(�mn)��G

↵
mn

�
= 0

8. @2✓��↵

↵0

2


�↵0

4
�m
��(�

pq)�↵Fmpq +
↵0

2
�m
���m↵�K

��

�
= B↵� + ↵0�m

��@mC
�
↵

9. ⇧mNpq�↵

↵0

2


D↵Fmpq � �m↵�G

�
pq

�
= 2@mF↵pq + (�[p)↵�(K4)

�
|m|q]

16

where, we have used the fact that the trace of product of 5-form and 1-form is zero and the

5-form is symmetric in its spinor indices.

For solving the equations of motion, we shall need to take into account all of these constraint

relations between the pure spinor variables.

4.3 Setting up the Equations

We shall now equate QU and @V and solve the resulting equations of motion. As mentioned

earlier, a convenient way to do this is to equate the terms with the same basis elements taking

into account the constraint identities given above.

To take into account the constraint identities, we have two options - eliminate some basis in

terms of others or introduce Lagrange multipliers. We shall make use of both of these options.

We shall use the elimination method for taking care of (4.38) and (4.39) constraints. More

specifically, we shall eliminate the basis involving @⇧m in favour of the basis involving d↵d�

and similarly we shall eliminate the anti-symmetric part of the basis involving NmnNpq (in

simultaneous m $ p and n $ q exchange) in the favor of basis involving @Nmn. On the other

hand, we shall introduce Lagrange multipliers for the six constraints (4.32)-(4.37) which follow

from the pure spinor constraint and involve the pure spinor ghost. This means that we add a

very specific zero to QU = @V equation so that we have

QU = @V +
6X

a=1

IaKa (4.41)

The IaKa involve contraction of the six identities (4.32)-(4.37) with appropriate Lagrange

multiplier superfields. We denote these arbitrary superfields by Ki (i = 1, · · · 6). Thus,
6X

a=1

IaKa ⌘ (I1)
n
�(K1)

�
n + (I2)

mnq
� (K2)

�
mnq + (I3)

n
��(K3)

��
n + (I4)

pn
� (K4)

�
pn

+ (I5)
�n
� (K5)

�
�n + (I6)

n
�(K6)

�
n (4.42)

The Lagrange multiplier superfields Ki will also be determined in terms of the basic superfields

Bmnp, Gmn and  m↵ as we shall see.

We can now write down the equations of motion. Using equations (4.42), (4.32)-(4.37) and

the expressions of QU and @V , we obtain the following equations after comparing the same

basis elements in both sides of (4.41)

1. ⇧m⇧n�↵

↵0

2


D↵Fmn � �n↵�F

�
m

�
= 2@nHm↵
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1. ⇧m⇧n�↵

↵0

2


D↵Fmn � �n↵�F

�
m

�
= 2@nHm↵

2. ⇧m@✓��↵

↵0

2


�n
↵�(Fmn + Fnm)�D↵Gm���m

↵�F
�
�

�
= 2@mB↵� +D�Hm↵

3. d↵@✓���

↵0

2


��m

��F
↵

m +D�F
↵
� �

1

2
(�mn)↵�Hmn�

�
= D�C

↵
�

4. ⇧md��↵

↵0

2


�D↵F

�
m � 1

2
(�pq)�↵Fmpq � �m

↵�

⇣
K�� �K��

⌘�
= 2@mC

�
↵

5. @✓↵@✓���

↵0

2


�m
�[↵Gm�] +D�H↵�

�
= D[�B|�|↵]

6. @⇧m�↵

(↵0)2

8
(�m�

pq)�↵G
�
pq = Hm↵

7. d↵d���

↵0

2


D�K

↵� +
1

2
(�mn)��G

↵
mn

�
= 0

8. @2✓��↵

↵0

2


�↵0

4
�m
��(�

pq)�↵Fmpq +
↵0

2
�m
���m↵�K

��

�
= B↵� + ↵0�m

��@mC
�
↵

9. ⇧mNpq�↵

↵0

2


D↵Fmpq � �m↵�G

�
pq

�
= 2@mF↵pq + (�[p)↵�(K4)

�
|m|q]
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14 MORE SUCH TERMS

10. ⇧mJ�↵

0 = �1

2
�q

↵�(K4)
�
mq

11. ⇧m@�↵

↵0

2


↵0�n

↵�@nF
�

m � ↵0

4
(�pq)�↵D�Fmpq +Gm↵ +

↵0

4
(�m�

pq)�↵G
�
pq

�

= Hm↵ � ↵0�q
↵�(K4)

�
mq

12. @✓↵Nmn��

↵0

2


�p
↵�Fpmn �D�Hmn↵

�
= D↵F�mn + (�[m)��(K5)

�
↵n]

13. @✓↵J��

0 = �1

2
�n
��(K5)

�
↵n

14. @✓↵@��

↵0

2


�↵0

4
�m
↵�(�

pq)��Fmpq +
↵0

2
�m
�↵�m��K

�� + ↵0�m
��@mF

�
↵ +

↵0

4
(�mn)��D�Hmn↵ � 2H↵�

�

= B�↵ � ↵0�n
��(K5)

�
↵n

15. @2�↵

↵0

2


�↵0

4
�m
↵�F

�
m � (↵0)2

8
(�m�

pq)�↵@
mG�

pq +
↵02

32
(�mn�pq)�↵D�Gmnpq �

↵0

8
(�mn)�↵Hmn�

�

= �↵0�n
↵�(K6)

�
n

16. @J�↵

0 = �1

2
�n
↵�(K6)

�
n

17. J@�↵

0 = �↵0�n
↵�(K1)

�
n �

1

2
�n
↵�(K6)

�
n
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STEP 7
WRITE DOWN THE ANSATZ FOR SUPERFIELDS OF INTEGRATED 

VERTEX AND THE LAGRANGE MULTIPLIERS 

superfields whose theta independent components can’t form the 84, 44 or 128 representations

of SO(9), must be zero.

Next, we consider the superfield G�
mn. Since, it is also anti symmetric in its vector indices m

and n, going to the rest frame, we find that its non zero components can only be G�
0a and G�

ab.

Our goal is to look for representations of SO(9) corresponding to the physical states. Now,

the index structure of G�
0a implies that its theta independent component forms the product

representation 16 ⇥ 9 which contains one 128. Similarly, G�
ab contains one 128. This means

that the theta independent component of G�
mn should contain two representations of 128 and

hence there should be two terms involving  m↵ in the expansion of G�
mn in terms of the basic

fields Bmnp, Gmn and  m↵.

Doing this analysis for all the superfields appearing in (4.24), we find that the most general

form of the superfields in momentum space are given by

C↵ = Cm = E↵ = C = Cmn = Fm = F ↵ = Pmn = H = H↵ = 0

Fmn = f1Gmn , Gm↵ = g1 m↵

K↵� = a �↵�
mnpB

mnp , H↵� = h1�
mnp
↵� Bmnp

F ↵
� = f5(�

mnpq)↵ �kmBnpq , F ↵
m = f2k

r(�r)
↵� m�

Fmpq = f3Gm[pkq] + f4Bmpq , G�
pq = g2�

��
[p  q]� + g3k

r���
r k[p q]�

Hmn↵ = h2 k[m n]↵ + h3k
q(�q[m)

�
↵  n]�

Gmnpq = g4k[mBn]pq + g5k[pBq]mn + g6k[mGn][pkq] + g7 ⌘[m[pGq]n] (4.46)

We also need expressions for the Lagrange multipliers in terms of the basic superfields. By

21

✤ SUPERFIELDS APPEARING IN INTEGRATED VERTEX



✤ LAGRANGE MULTIPLIER SUPERFIELDS
following the same procedure, we find

(K1)
↵
m = c1k

r(�r)
↵� m�

(K2)
↵
mnq = c2k[m�

↵�
n]  q� + c3kq�

↵�
[m n]� + c4�

↵�
q k[m n]� + c5k

r�↵�
rmn q� + c6k

r�↵�
rq[m n]�

+ c7k
rkq�

↵�
r k[m n]� + c8k

r�↵�
r ⌘q[m n]�

(K3)
↵�
m = c9Gmn(�

n)↵� + c10kmBstu(�
stu)↵� + c11ksBtum(�

stu)↵� + c12ksBtuv(�
stuv

m )↵�

(K4)
↵
mn = c13(�n)

↵� m� + c14(�m)
↵� n� + c15k

rkm(�r)
↵� n� + c16k

rkn(�r)
↵� m�

(K5)
↵
�m = c17kpGqm(�

pq)↵� + c18Bmpq(�
pq)↵� + c19Bpqr(�

pqr
m )↵� + c20kmkpBqrs(�

pqrs)↵�

(K6)
↵
m = c21k

r(�r)
↵� m�

Our job has now reduced to finding the unknown coe�cients appearing in this ansatz. If we

put these ansatz for the superfields in the equation of motion given above, we shall obtain

a system of linear algebraic equations for the unknown coe�cients which are much easier to

solve. However, before doing this, we shall now see that there are some restriction on some of

the coe�cients which follow from the constraint identities given earlier and also from direct

pure spinor condition.

We start by noting that the superfield Gmnpq appears in the expression of the integrated

vertex operator as NmnNpqGmnpq. We want to find the consequence of the identity (4.39)

on Gmnpq. For this, we consider the quantity (NmnNpq � NpqNmn)Gmnpq. Using the identity

(4.39) and the ansatz for Gmnpq given in (4.46), we find that the right hand side of the identity

(4.39) vanishes identically after contraction with Gmnpq and hence

: (NmnNpq �NpqNmn)Gmnpq : = 0 =) : NmnNpq(Gmnpq �Gpqmn) : = 0 (4.47)

This shows that Gmnpq is symmetric under the exchange of simultaneous m $ p and n $ q

indices. Now, the last two terms in the expression of Gmnpq are already consistent with this

property. However, this is not the case with the first two terms for which the tensor structures

multiplying the coe�cients g4 and g5 get exchanged. Thus, for Gmnpq to be symmetric under

the exchange of m $ p and n $ q indices, we must have

g4 = g5 (4.48)

Next, we show that the term involving g7 in the Gmnpq superfield vanishes identically. For

this, we first note that the term involving g7 appears in the integrated vertex operator as

g7N
mnNpq⌘mpGqn = �g7N

mnNnqGmq (4.49)
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STEP 8
ELIMINATE THE BASES FOR THE CONSTRAINTS FOR WHICH THE  

LAGRANGE MULTIPLIERS ARE NOT INTRODUCED. 

EXAMPLE

constraint identities below.

(I1)
n
� ⌘ : NmnJ�↵ : (�m)↵� �

1

2
: JJ�↵ : (�n)↵� � ↵0 : J@�↵ : �n

↵� = 0 (4.32)

(I2)
mnq
� ⌘ : NmnNpq�↵ : (�p)↵� �

1

2
: NmnJ�↵ : (�q)↵� � ↵0 : Nmn@�↵ : �q

↵� = 0(4.33)

(I3)
n
�� ⌘ : d�N

mn�↵ : (�m)↵� �
1

2
: d�J�

↵ : (�n)↵� � ↵0 : d�@�
↵ : �n

↵� = 0 (4.34)

(I4)
pn
� ⌘ : ⇧pNmn�↵ : (�m)↵� �

1

2
: ⇧pJ�↵ : (�n)↵� � ↵0 : ⇧p@�↵ : �n

↵� = 0 (4.35)

(I5)
�n
� ⌘ : @✓�Nmn�↵ : (�m)↵� �

1

2
: @✓�J�↵ : (�n)↵� � ↵0 : @✓�@�↵ : �n

↵� = 0 (4.36)

The above 5 identities follow from taking the OPE of (4.31) with the object of conformal

weight one, namely J,Nmn, d�,⇧p and @✓� respectively. The identity which can be obtained

by taking the derivative of (4.31) is given by

(I6)
n
� ⌘ : @Nmn�↵ : (�m)↵�+ : Nmn@�↵ : (�m)↵� �

1

2
: @J�↵ : (�n)↵� �

1

2
: J@�↵ : (�n)↵�

� ↵0�n
↵�@

2�↵ = 0

(4.37)

Apart from these, there are two more constraint identities which follow from the OPEs given

in section 2. The OPE of d↵ with d� implies

: d↵d� : + : d�d↵ : +
↵0

2
@⇧t(�t)↵� = 0 (4.38)

Similarly, the OPE of Nmn with Npq implies

: NmnNpq : � : NpqNmn : = �↵0

2

h
⌘np@Nmq � ⌘nq@Nmp � ⌘mp@Nnq + ⌘mq@Nnp

i
(4.39)

One way to think about these two identities is to note that we are working with a given ordering

of the pure spinor variables inside the normal ordering. However, for : d↵d� : and : NmnNpq :,

there is no preferred ordering. The above two identities (4.38) and (4.39) are a reflection of

this fact9.

For later purpose, we multiply (4.38) with 5-form �↵�
mnpqr to obtain

�↵�
mnpqr

⇣
: d↵d� : + : d�d↵ : +

↵0

2
@⇧t(�t)↵�

⌘
= 0 =) �↵�

mnpqr : d↵d� : = 0 (4.40)

9Note that there are OPE between ⇧m and ⇧n as well as between J and J . However, no pure spinor fields
appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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1. ⇧m⇧n�↵

↵0

2


D↵Fmn � �n↵�F

�
m

�
= 2@nHm↵

2. ⇧m@✓��↵

↵0

2


�n
↵�(Fmn + Fnm)�D↵Gm���m

↵�F
�
�

�
= 2@mB↵� +D�Hm↵

3. d↵@✓���

↵0

2


��m

��F
↵

m +D�F
↵
� �

1

2
(�mn)↵�Hmn�

�
= D�C

↵
�

4. ⇧md��↵

↵0

2


�D↵F

�
m � 1

2
(�pq)�↵Fmpq � �m

↵�

⇣
K�� �K��

⌘�
= 2@mC

�
↵

5. @✓↵@✓���

↵0

2


�m
�[↵Gm�] +D�H↵�

�
= D[�B|�|↵]

6. @⇧m�↵

(↵0)2

8
(�m�

pq)�↵G
�
pq = Hm↵

7. d↵d���

↵0

2


D�K

↵� +
1

2
(�mn)��G

↵
mn

�
= 0

8. @2✓��↵

↵0

2


�↵0

4
�m
��(�

pq)�↵Fmpq +
↵0

2
�m
���m↵�K

��

�
= B↵� + ↵0�m

��@mC
�
↵

9. ⇧mNpq�↵

↵0

2


D↵Fmpq � �m↵�G

�
pq

�
= 2@mF↵pq + (�[p)↵�(K4)

�
|m|q]
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STEP 9 SUBSTITUTE THE ANSATZ AND SET COEFFICIENTS OF ALL THE  
 BASIS TO ZERO. 

EQUATIONS RELATING 

a, {f1, f2, · · · , f5, }, {g1, g2, · · · , g7}, h1, h2, h3, {c1, c2, · · · , c21}

STEP 10 SOLVE FOR THE ABOVE EQUATIONS 

TO FIND …….. 

where, we have used the fact that the trace of product of 5-form and 1-form is zero and the

5-form is symmetric in its spinor indices.

For solving the equations of motion, we shall need to take into account all of these constraint

relations between the pure spinor variables.

4.3 Setting up the Equations

We shall now equate QU and @V and solve the resulting equations of motion. As mentioned

earlier, a convenient way to do this is to equate the terms with the same basis elements taking

into account the constraint identities given above.

To take into account the constraint identities, we have two options - eliminate some basis in

terms of others or introduce Lagrange multipliers. We shall make use of both of these options.

We shall use the elimination method for taking care of (4.38) and (4.39) constraints. More

specifically, we shall eliminate the basis involving @⇧m in favour of the basis involving d↵d�

and similarly we shall eliminate the anti-symmetric part of the basis involving NmnNpq (in

simultaneous m $ p and n $ q exchange) in the favor of basis involving @Nmn. On the other

hand, we shall introduce Lagrange multipliers for the six constraints (4.32)-(4.37) which follow

from the pure spinor constraint and involve the pure spinor ghost. This means that we add a

very specific zero to QU = @V equation so that we have

QU = @V +
6X

a=1

IaKa (4.41)

The IaKa involve contraction of the six identities (4.32)-(4.37) with appropriate Lagrange

multiplier superfields. We denote these arbitrary superfields by Ki (i = 1, · · · 6). Thus,
6X

a=1

IaKa ⌘ (I1)
n
�(K1)

�
n + (I2)

mnq
� (K2)

�
mnq + (I3)

n
��(K3)

��
n + (I4)

pn
� (K4)

�
pn

+ (I5)
�n
� (K5)

�
�n + (I6)

n
�(K6)

�
n (4.42)

The Lagrange multiplier superfields Ki will also be determined in terms of the basic superfields

Bmnp, Gmn and  m↵ as we shall see.

We can now write down the equations of motion. Using equations (4.42), (4.32)-(4.37) and

the expressions of QU and @V , we obtain the following equations after comparing the same

basis elements in both sides of (4.41)

1. ⇧m⇧n�↵

↵0

2


D↵Fmn � �n↵�F

�
m

�
= 2@nHm↵
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�c5 + 2↵0
g5 + k1 = 0 , �c3 + c6 � 4↵0

g5 = 0 , �4↵02
g4 + 4↵02

g5 � 4i↵0
g6 � k2 = 0

4↵02
g4 � 4↵02

g5 � 4i↵0
g6 � c7 = 0 , 2c5 + 4i↵0

g7 � k7 = 0 , 4i↵0
g7 � c6 � c8 = 0

�c3 + c8 = 0 , c2 = 0 , g4 = g5 (4.38) {?}

These equations when solved fix all the unknown coe�cients to be

a = � 1

↵02 , c1 =
112i

↵0 , c2 = 0 , c3 =
28i

3↵0 , c4 =
76i

3↵0 , c5 = �16i

3↵0 , c6 =
76i

3↵0 , c7 = 48i

c8 =
28i

3↵0 , c9 =
35

6↵0 , c10 =
i

↵0 , c11 = 0 , c12 = � i

6↵0 , c13 =
24

↵0 , c14 = �24

↵0

c15 = �30 , c16 = 192 , c17 =
63i

16
, c18 =

3

8↵0 , c19 = � 9

16↵0 , c20 = �57

16
, c21 =

73i

3

f1 = �18

↵
, f2 =

288i

↵
, f3 =

36i

↵0 , f4 =
12

↵02 , f5 = �4i

↵0 , g1 = �432

↵0 , g2 =
48

↵02

g3 = �192

↵0 , g4 =
4i

↵02 , g5 =
4i

↵02 , g6 = �12

↵0 , g7 =
26

3↵02 , h1 =
2

↵0 , h2 = �576i

↵0

h3 = �144i

↵0 , k1 = �40i

3↵0 , k2 = 48i , k3 = �16i

↵0 , k4 =
52i

3↵0 , k5 =
92i

3↵0 , k6 = 0

k7 =
24i

↵0 , k8 =
38i

3↵0 (4.39) {?}

a = � 1

↵02 , f1 = �18

↵
, f2 =

288i

↵
, f3 =

36i

↵0

f4 =
12

↵02 , f5 = �4i

↵0 , g1 = �432

↵0 , g2 =
48

↵02

g3 = �192

↵0 , g4 =
4i

↵02 , g5 =
4i

↵02 , g6 = �12

↵0

h1 =
2

↵0 , h2 = �576i

↵0 , h3 = �144i

↵0 (4.40) {?}

(K1)
↵
m = c1k

r(�r)
↵� m�

(K2)
↵
mnq = c2k[m�

↵�
n]  q� + c3kq�

↵�
[m n]� + c4�

↵�
q k[m n]� + c5k

r
�
↵�
rmn q� + c6k

r
�
↵�
rq[m n]�

+ c7k
r
kq�

↵�
r k[m n]� + c8k

r
�
↵�
r ⌘q[m n]�
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ALL 
CONSTRAINTS

IMPLIED  TRANSPARENTLY FROM  
 (��m�) = 0

IMPLIED BY OPE

IMPLIED  SUBTLY FROM  
(��m�) = 0

(I)

(II)

(III)

 THERE DOES NOT SEEM TO BE YET OTHER WAYS IN WHICH ANY CONSTRAINT        
     CAN APPEAR

 THIS CAN BE A REFLECTION GOING FROM MASSLESS STATES TO MASSIVE STATES



★   IN ORDER TO WORK IN GAUGE INVARIANT FASHION

(w↵,�
�) (J,Nmn,��) +  CONSTRAINTS

2 Brief review of pure spinor formalism

In this section, we briefly recall some of the results of the minimal pure spinor formalism.

For details, we refer the reader to original papers. The purpose of this section is to mainly

introduce the fields which are used in the formalism. After this, we shall recall some of the

details of the first massive vertex operator [1] which are relevant for our purpose.

2.1 Some general results

As mentioned earlier, the pure spinor formalism is a formalism to quantize superstrings co-

variantly. Unlike RNS and Green-Schwarz formalisms, all the underlying symmetries, namely

Poincare and supersymmetry remain manifest in this formalism. Restricting to open strings,

the world-sheet CFT in the flat spacetime is described by the action

S =
2

↵0

Z
d2z

✓
1

2
@Xm@̄Xm + p↵@̄✓

↵ � w↵@̄�
↵

◆
(2.1)

where, m = 0, 1, , · · · , 9 and ↵ = 1, · · · , 16.

The conformal weights of the fields p↵, w↵, ✓↵ and �↵ are 1, 1, 0, 0 respectively. Moreover,

the field p↵ is a left handed Majorana-Weyl spinor whereas ✓↵ is right handed Majorana Weyl

spinor3. The fields w↵ and �↵ are bosonic objects which transform as left and right handed

Majorana Weyl spinor respectively under the Lorentz transformation (hence, violating the

spin-statistics theorem). The field �↵ satisfies an important constraint, the so called pure

spinor constraint

�↵�m
↵��

� = 0 (2.2)

where, �m are the 16⇥ 16 gamma matrices, described in detail in the appendix B.

The ghost Lorentz and ghost number currents Nmn and J are given by

Nmn =
1

2
w↵(�

mn)↵��
� , J = w↵�

↵ (2.3)

The physical spectrum of the theory corresponds to the cohomology of the following BRST

operator

Q =

I
dz �↵(z)d↵(z) (2.4)

3All the left-handed spinors carry lower spinor indices whereas all the right-handed spinors carry upper
spinor indices.

5

w↵ ! w↵ + ⇤m(�m�)↵

(��m�) = 0

⇧m d↵

(w↵�
↵)

1

2
(w↵�

mn�↵)

LETS RECALL THE ACTION



The OPE among the various fields are given by 

which generates the following transformations

δXm = λγmθ , δθα = λα , δλα = 0 , δdα = −Πm(γmλ)α , δwα = dα (2.5)

where, dα and Πm are supersymmetric invariant combinations

dα = pα − 1

2
γmαβθ

β∂Xm − 1

8
γmαβγmσδθ

βθσ∂θδ (2.6)

Πm = ∂Xm +
1

2
γmαβθ

α∂θβ (2.7)

The OPE between various objects is given by

dα(z)dβ(w) = −
α′γmαβ

2(z − w)
Πm(w) + · · · , dα(z)Π

m(w) =
α′γmαβ

2(z − w)
∂θβ(w) + · · ·

dα(z)V (w) =
α′

2(z − w)
DαV (w) + · · · , Πm(z)V (w) = − α′

(z − w)
∂mV (w) + · · ·

Πm(z)Πn(w) = − α′ηmn

2(z − w)2
+ · · · , Nmn(z)λα(w) =

α′(γmn)αβ
4(z − w)

λβ(w) + · · ·

Nmn(z)Npq(w) = − 3(α′)2

2(z − w)2
ηm[qηp]n +

α′

(z − w)

(
ηp[nNm]q − ηq[nNm]p

)
+ · · ·

J(z)J(w) = − (α′)2

(z − w)2
+ · · · , J(z)λα(w) =

α′

2(z − w)
λα(w) + · · · (2.8)

where, V is an arbitrary superfield, ∂ denotes the derivative with respect to world-sheet coor-

dinate, ∂m denotes the derivative with respect to the spacetime coordinate Xm and

Dα ≡ ∂α + γmαβθ
β∂m (2.9)

denotes the supercovariant derivative. The · · · terms denote the non-singular terms.

The scattering of N external string states at tree level is described by the amplitude

AN = ⟨V 1V 2V 3

∫
U4 · · ·

∫
UN⟩ (2.10)

V and U in the above expression denote the unintegrated and integrated vertex operators

respectively. The correlation functions of pure spinor fields are computed using the OPEs

given in equation (2.8) and the identities of appendix C4.

After this brief recollection of general pure spinor results, we now turn to unintegrated

massive vertex operator.

4In appendix C, we only give the identities which are used in this paper. See [7] for a complete list.

6

    where,             
V @m· · ·

non-singular terms any Superfield spacetime derivative

D↵ ⌘ @

@✓↵
+ (�m)↵�✓

�@m

Super-Covariant Derivative



where, we have used

: 2d�⇧
m�↵@mC

�
↵ : = : 2⇧md��

↵@mC
�
↵ : +↵0 : �m

��@
2✓��↵@mC

�
↵ :

We now need to equate QU and @V . A convenient way to do this is to compare the same

basis elements in both sides. For the conformal weight 2 and ghost number 1 pure spinor

objects (which appear in QU and @V ), naively, we have following 26 basis elements

⇧m⇧n�↵ , ⇧md↵�
� , ⇧m@✓��� , ⇧mJ�↵ , ⇧mNnp�↵ , @⇧m�↵ , ⇧m@�↵

d↵d��
� , d↵@✓

��� , d↵J�
↵ , d↵N

mn�↵ , @d↵�
� , d↵@�

�

@✓↵@✓��� , @✓↵J�� , @✓↵Nmn�↵ , @2✓↵�� , @✓↵@��

NmnNpq�↵ , NmnJ�↵ , @Nmn�↵ , Nmn@�↵

JJ�↵ , @J�↵ , J@�↵

@2�↵ (4.30)

As mentioned earlier, all of these basis elements are not independent. There are non trivial

relations among some of these bases. We turn to these constraint relations between the basis

elements in the next subsection.

4.2 Constraint Identities

As mentioned in section 2, due to pure spinor constraint, the Lorentz current Nmn and the

ghost current J satisfy the identity [23]

: Nmn�↵ : (z)(�m)↵� �
1

2
: J�↵ : (z)(�n)↵� � ↵0�n

↵�@�
↵(z) = 0 (4.31)

This constraint is relevant if one is interested in the quantities involving conformal weight 1

and ghost number 1. However, in the expressions for QU and @V , we encounter quantities

with conformal weight 2 and ghost number 1. For this case, there are several identities which

can be obtained from the above identity (2.4) by taking the OPE of this with the objects of

conformal weight 1 and demanding the normal order terms in the OPE to vanish (the pole

terms of the OPE vanish automatically as expected). Since the derivative and the normal

ordering commute, the world-sheet derivative of (4.31) also gives a constraint. We list these
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 CONSTRAINTS IMPLIED TRANSPARENTLY FROM  (��m�) = 0

( I ) 

Nmn�↵(�m)↵� � 1

2
J�↵(�n)↵� = 0



constraint identities below.

(I1)
n
� ⌘ : NmnJ�↵ : (�m)↵� �

1

2
: JJ�↵ : (�n)↵� � ↵0 : J@�↵ : �n

↵� = 0 (4.32)

(I2)
mnq
� ⌘ : NmnNpq�↵ : (�p)↵� �

1

2
: NmnJ�↵ : (�q)↵� � ↵0 : Nmn@�↵ : �q

↵� = 0(4.33)

(I3)
n
�� ⌘ : d�N

mn�↵ : (�m)↵� �
1

2
: d�J�

↵ : (�n)↵� � ↵0 : d�@�
↵ : �n

↵� = 0 (4.34)

(I4)
pn
� ⌘ : ⇧pNmn�↵ : (�m)↵� �

1

2
: ⇧pJ�↵ : (�n)↵� � ↵0 : ⇧p@�↵ : �n

↵� = 0 (4.35)

(I5)
�n
� ⌘ : @✓�Nmn�↵ : (�m)↵� �

1

2
: @✓�J�↵ : (�n)↵� � ↵0 : @✓�@�↵ : �n

↵� = 0 (4.36)

The above 5 identities follow from taking the OPE of (4.31) with the object of conformal

weight one, namely J,Nmn, d�,⇧p and @✓� respectively. The identity which can be obtained

by taking the derivative of (4.31) is given by

(I6)
n
� ⌘ : @Nmn�↵ : (�m)↵�+ : Nmn@�↵ : (�m)↵� �

1

2
: @J�↵ : (�n)↵� �

1

2
: J@�↵ : (�n)↵�

� ↵0�n
↵�@

2�↵ = 0 (4.37)

Apart from these, there are two more constraint identities which follow from the OPEs given

in section 2. The OPE of d↵ with d� implies

: d↵d� : + : d�d↵ : +
↵0

2
@⇧t(�t)↵� = 0 (4.38)

Similarly, the OPE of Nmn with Npq implies

: NmnNpq : � : NpqNmn : = �↵0

2

h
⌘np@Nmq � ⌘nq@Nmp � ⌘mp@Nnq + ⌘mq@Nnp

i
(4.39)

One way to think about these two identities is to note that we are working with a given ordering

of the pure spinor variables inside the normal ordering. However, for : d↵d� : and : NmnNpq :,

there is no preferred ordering. The above two identities (4.38) and (4.39) are a reflection of

this fact9.

For later purpose, we multiply (4.38) with 5-form �↵�
mnpqr to obtain

�↵�
mnpqr

⇣
: d↵d� : + : d�d↵ : +

↵0

2
@⇧t(�t)↵�

⌘
= 0 =) �↵�

mnpqr : d↵d� : = 0 (4.40)

9Note that there are OPE between ⇧m and ⇧n as well as between J and J . However, no pure spinor fields
appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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(4.39)

One way to think about these two identities is to note that we are working with a given ordering

of the pure spinor variables inside the normal ordering. However, for : d↵d� : and : NmnNpq :,

there is no preferred ordering. The above two identities (4.38) and (4.39) are a reflection of

this fact9.

For later purpose, we multiply (4.38) with 5-form �↵�
mnpqr to obtain
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mnpqr

⇣
: d↵d� : + : d�d↵ : +
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9Note that there are OPE between ⇧m and ⇧n as well as between J and J . However, no pure spinor fields
appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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Apart from these, there are two more constraint identities which follow from the OPEs given

in section 2. The OPE of d↵ with d� implies

: d↵d� : + : d�d↵ : +
↵0

2
@⇧t(�t)↵� = 0 (4.38)
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One way to think about these two identities is to note that we are working with a given ordering

of the pure spinor variables inside the normal ordering. However, for : d↵d� : and : NmnNpq :,

there is no preferred ordering. The above two identities (4.38) and (4.39) are a reflection of

this fact9.

For later purpose, we multiply (4.38) with 5-form �↵�
mnpqr to obtain

�↵�
mnpqr

⇣
: d↵d� : + : d�d↵ : +
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9Note that there are OPE between ⇧m and ⇧n as well as between J and J . However, no pure spinor fields
appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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 CONSTRAINTS IMPLIED SUBTLY FROM (��m�) = 0

( III ) 

NmpNpnGmn = 0EX.

WHEN PRESENT THEY LEAD TO SOME COEFFICIENTS UNDETERMINED
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DαBmnp = 12(γ[mnΨp])α + 24α′ktk[m(γ|t|nΨp])α (3.4)

DαΨsβ =
1

16
Gsmγ

m
αβ +

i

24
kmBnps(γ

mnp)αβ −
i

144
kmBnpq(γsmnpq)αβ (3.5)

(γm)αβΨmβ = 0 ; kmΨmβ = 0 ; kmBmnp = 0 ; kmGmn = 0 & ηmnGmn = 0 (3.6)

We shall now argue as to how to arrive at above equations. To see that equations (3.1) and

(3.2) are the correct covariant generalizations of the rest frame results given in [1], we note that

the 128 fermionic degrees of freedom in the rest frame are contained in the spatial components

of Ψmβ, namely in Ψaβ. Similarly, the 44 Bosonic degrees of freedom are contained in Gab.

This means that Ψ0β, G0b and G00 must either be zero or should be determined in terms of

Ψaβ, Babc and Gab, since otherwise, we shall need to impose further constraints on Ψaβ and

Gab. However, it is easy to see that due to the rest frame constraints

(γa)
αβΨa

β = 0 , ηabGab = 0 , when ka = 0 (3.7)

we can’t construct Ψ0β and G00 in terms of Ψaβ and Gab consistent with rotational invariance

in the rest frame. Another way to argue this is to note that G00, G0a and Ψ0β belong to the

singlet, 9 and 16 representations of SO(9) group (which is the little group in the rest frame).

This means that these fields can not be expressed as linear combinations of the existing fields

Ψaβ, Babc and Gab (which form 128, 84 and 44 representations respectively of SO(9)). Hence,

Ψ0β, G00 and G0a must be zero in the rest frame10, i.e.

Ψ0β = 0 , G00 = 0 , G0a = 0 , when ka = 0 (3.8)

Now, the proposed generalizations (3.1) and (3.2) can be written as

Hmβ + 72Ψmβ = 0 , (γm)
αβΨm

β = 0 , Gmn − 2Dαγ
αβ
(mΨn)β = 0 , ηmnGmn = 0 (3.9)

which can alternatively be written in terms of their spatial and temporal components as

Haβ + 72Ψaβ = 0 , H0β + 72Ψ0β = 0 , (γa)
αβΨa

β + (γ0)
αβΨ0

β = 0

Gab − 2Dαγ
αβ
(a Ψb)β = 0 , G00 − 2Dαγ

αβ
(0 Ψ0)β = 0 , G0a − 2Dαγ

αβ
(0 Ψa)β = 0

ηabGab + η00G00 = 0 (3.10)

10For G0a, also see the footnote (11).
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2 Brief review of pure spinor formalism

In this section, we briefly recall some of the results of the minimal pure spinor formalism.

For details, we refer the reader to original papers. The purpose of this section is to mainly

introduce the fields which are used in the formalism. After this, we shall recall some of the

details of the first massive vertex operator [1] which are relevant for our purpose.

2.1 Some general results

As mentioned earlier, the pure spinor formalism is a formalism to quantize superstrings co-

variantly. Unlike RNS and Green-Schwarz formalisms, all the underlying symmetries, namely

Poincare and supersymmetry remain manifest in this formalism. Restricting to open strings,

the world-sheet CFT in the flat spacetime is described by the action

S =
2

↵0

Z
d2z

✓
1

2
@Xm@̄Xm + p↵@̄✓

↵ � w↵@̄�
↵

◆
(2.1)

where, m = 0, 1, , · · · , 9 and ↵ = 1, · · · , 16.

The conformal weights of the fields p↵, w↵, ✓↵ and �↵ are 1, 1, 0, 0 respectively. Moreover,

the field p↵ is a left handed Majorana-Weyl spinor whereas ✓↵ is right handed Majorana Weyl

spinor3. The fields w↵ and �↵ are bosonic objects which transform as left and right handed

Majorana Weyl spinor respectively under the Lorentz transformation (hence, violating the

spin-statistics theorem). The field �↵ satisfies an important constraint, the so called pure

spinor constraint

�↵�m
↵��

� = 0 (2.2)

where, �m are the 16⇥ 16 gamma matrices, described in detail in the appendix B.

The ghost Lorentz and ghost number currents Nmn and J are given by

Nmn =
1

2
w↵(�

mn)↵��
� , J = w↵�

↵ (2.3)

The physical spectrum of the theory corresponds to the cohomology of the following BRST

operator

Q =

I
dz �↵(z)d↵(z) (2.4)

3All the left-handed spinors carry lower spinor indices whereas all the right-handed spinors carry upper
spinor indices.

5

  The world-sheet pure spinor superstring action is given by 

�↵         is a bosonic spacetime spinor (has 11 ind. component)  as it satisfies

��m� = 0 8 m This is pure spinor constraint

where,                  forms a 10 dim. superspace                              (Xm, ✓↵) m = 0, 1, · · · , 9 and ↵ = 1, 2, · · · , 16

✓↵p↵ w↵          and           are the conjugate momentum fields of          and        respectively�↵

(�m)↵�    are the components of the                    Gamma matrices 16⇥ 16
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 Pure spinor constraint imparts  the following gauge transformation property 

w↵ ! w↵ + ⇤m(�m�)↵ 11 independent w↵

 To work with gauge invariant objects we introduce 

 To keep SUSY manifest we work with 
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and α′ is the inverse of the string tension. One can use (2.2) to show that dα is spacetime

supersymmetric and satisfies the OPE’s [6]

dα(y)dβ(z) → −
α′

2(y − z)
γm

αβΠm(z), dα(y)Πm(z) →
α′

2(y − z)
γm

αβ∂θ
β(z), (2.3)

Πm(y)V (z) → −
α′

y − z
∂mV (z), dα(y)V (z) →

α′

2(y − z)
DαV (z),

where Πm = ∂xm + 1
2γ

m
αβθ

α∂θβ, V (x, θ) is an arbitrary ten-dimensional superfield,

and Dα = ∂
∂θα

+ γm
αβθ

β∂m is the supersymmetric covariant derivative which satisfies

{Dα, Dβ} = 2γm
αβ∂m.

The pure spinor constraint λγmλ = 0 implies that the canonical momentum for λα,

which will be called wα, only appears in combinations which are invariant under the gauge

transformation δwα = (γmλ)αΛm for arbitrary Λm. This implies that wα only appears

in the Lorentz-covariant combinations Nmn = 1
2 (wγmnλ) and J = wαλ

α. By solving

λγmλ = 0 in terms of unconstrained fields, one can show that Nmn and J satisfy the

OPE’s [4]

Nmn(y)λα(z) →
α′

4(y − z)
(γmn)α

βλ
β(z), J(y)λα(z) →

α′

2(y − z)
λα(z), (2.4)

Nkl(y)Nmn(z) → −
3(α′)2

4(y − z)2
ηk[nηm]l +

α′

2(y − z)
(ηm[lNk]n(z) − ηm[lNk]m(z)),

J(y)J(z) → −
(α′)2

(y − z)2
.

Furthermore, λγmλ = 0 implies that Nmnand J satisfy the relation

: Nmnλα : γmαβ −
1

2
: Jλα : γn

αβ = α′γn
αβ∂λ

α(z) (2.5)

where the normal-ordered product is defined as

: UA(z)λα(z) :=

∮
dy

y − z
UA(y)λα(z).

To prove (2.5), note that wα drops out of the left-hand side because λγmλ = 0. And the

coefficient in the normal ordering contribution α′γn
αβ∂λ

α can be determined by computing

the double pole of (2.5) with J using the OPE J(y)J(z) → − (α′)2

(y−z)2 .

When α′(mass)2 = n, open superstring vertex operators are constructed from arbi-

trary combinations of [xm, θα, dα,λα, Nmn, J ] which carry ghost number one and conformal

2

along with the constraint 

 Given this we never have to invoke w↵ , p↵ and @Xm

which generates the following transformations

�Xm = ��m✓ , �✓↵ = �↵ , ��↵ = 0 , �d↵ = �⇧m(�m�)↵ , �w↵ = d↵ (2.5)

where, d↵ and ⇧m are supersymmetric invariant combinations

d↵ = p↵ � 1

2
�m

↵�✓
�@Xm � 1

8
�m
↵��m��✓

�✓�@✓� (2.6)

⇧m = @Xm +
1

2
�m
↵�✓

↵@✓� (2.7)

The OPE between various objects is given by

d↵(z)d�(w) = �
↵0�m

↵�

2(z � w)
⇧m(w) + · · · , d↵(z)⇧

m(w) =
↵0�m

↵�

2(z � w)
@✓�(w) + · · ·

d↵(z)V (w) =
↵0

2(z � w)
D↵V (w) + · · · , ⇧m(z)V (w) = � ↵0

(z � w)
@mV (w) + · · ·

⇧m(z)⇧n(w) = � ↵0⌘mn

(z � w)2
+ · · · , Nmn(z)�↵(w) =

↵0(�mn)↵�
4(z � w)

��(w) + · · ·

Nmn(z)Npq(w) = � 3(↵0)2

4(z � w)2
⌘m[q⌘p]n +

↵0

2(z � w)

⇣
⌘p[nNm]q � ⌘q[nNm]p

⌘
+ · · ·

J(z)J(w) = � (↵0)2

(z � w)2
+ · · · , J(z)�↵(w) =

↵0

2(z � w)
�↵(w) + · · · (2.8)

where, V is an arbitrary superfield, @ denotes the derivative with respect to world-sheet coor-

dinate, @m denotes the derivative with respect to the spacetime coordinate Xm and

D↵ ⌘ @↵ + �m
↵�✓

�@m (2.9)

denotes the supercovariant derivative. The · · · terms denote the non-singular terms.

The scattering of N external string states at tree level is described by the amplitude

AN = hV 1V 2V 3

Z
U4 · · ·

Z
UNi (2.10)

V and U in the above expression denote the unintegrated and integrated vertex operators

respectively. The correlation functions of pure spinor fields are computed using the OPEs

given in equation (2.8) and the identities of appendix C4.

After this brief recollection of general pure spinor results, we now turn to unintegrated

massive vertex operator.

4In appendix C, we only give the identities which are used in this paper. See [7] for a complete list.
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Xm , ⇧m

✓↵

p↵ , d↵

�↵

w↵

Nmn , J

Field Conformal 
Weight

Spacetime Nature Grassman
Nature

Ghost 
Number

0,1 Vector Even 0

0 Left Weyl Spinor Odd 0

1 Right Weyl Spinor Odd 0

0 Left Weyl Spinor Even 1

1 Right Weyl Spinor Even -1

1 Rank 2 Tensor, Scalar Even 0

Worldsheet and Spacetime nature of all variables

SPECTRUM
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  BRST operator

2 Brief review of pure spinor formalism

In this section, we briefly recall some of the results of the minimal pure spinor formalism.

For details, we refer the reader to original papers. The purpose of this section is to mainly

introduce the fields which are used in the formalism. After this, we shall recall some of the

details of the first massive vertex operator [1] which are relevant for our purpose.

2.1 Some general results

As mentioned earlier, the pure spinor formalism is a formalism to quantize superstrings co-

variantly. Unlike RNS and Green-Schwarz formalisms, all the underlying symmetries, namely

Poincare and supersymmetry remain manifest in this formalism. Restricting to open strings,

the world-sheet CFT in the flat spacetime is described by the action

S =
2

↵0

Z
d2z

✓
1

2
@Xm@̄Xm + p↵@̄✓

↵ � w↵@̄�
↵

◆
(2.1)

where, m = 0, 1, , · · · , 9 and ↵ = 1, · · · , 16.

The conformal weights of the fields p↵, w↵, ✓↵ and �↵ are 1, 1, 0, 0 respectively. Moreover,

the field p↵ is a left handed Majorana-Weyl spinor whereas ✓↵ is right handed Majorana Weyl

spinor3. The fields w↵ and �↵ are bosonic objects which transform as left and right handed

Majorana Weyl spinor respectively under the Lorentz transformation (hence, violating the

spin-statistics theorem). The field �↵ satisfies an important constraint, the so called pure

spinor constraint

�↵�m
↵��

� = 0 (2.2)

where, �m are the 16⇥ 16 gamma matrices, described in detail in the appendix B.

The ghost Lorentz and ghost number currents Nmn and J are given by

Nmn =
1

2
w↵(�

mn)↵��
� , J = w↵�

↵ (2.3)

The physical spectrum of the theory corresponds to the cohomology of the following BRST

operator

Q =

I
dz �↵(z)d↵(z) (2.4)

3All the left-handed spinors carry lower spinor indices whereas all the right-handed spinors carry upper
spinor indices.

5

Q2 = 0 $ ��m� = 0

Physical states in spectrum V

(γmnpqr)
αβ

[
DαC

σ
β + δσαEβ +

1

2
(γst)σαFβst

]
= 0 (2.16)

(γmnpqr)
αβ
[
DαAβ +Bαβ + α′γsβσ∂sC

σ
α − α′

2
DβEα +

α′

4
(γstD)βFαst

]

= 2α′γαβmnpqrγ
vwxys
αβ ηstK

t
vwxy (2.17)

(γmnp)
αβ
[
DαAβ +Bαβ + α′γsβσ∂sC

σ
α − α′

2
DβEα +

α′

4
(γstD)βFαst

]

= 16α′γαβmnpγ
wxy
αβ ηstK

s
wxys (2.18)

(γmnpqr)
αβDαEβ = (γmnpqrγ

vwxyγs)
α
αK

s
vwxy (2.19)

(γmnpqr)
αβDαF

st
β = −2(γmnpqrγ

vwxyγ[s)ααK
t]
vwxy (2.20)

where, Ks
vwxy are arbitrary superfields satisfying

−2 : Nstλ
αλβ : (γvwxyγ[s)αβK

t]
vwxy+ : Jλαλβ : (γvwxyγs)αβK

s
vwxy

+α′λα∂λβ
[
2(γvwxys)αβηstK

t
vwxy + 16(γwxy)αβK

s
wxys

]
= 0 (2.21)

which follows from the identity

: Nstλ
αλβ : γsβγ −

1

2
: Jλαλβ : (γt)βγ =

5α′

4
λα∂λβ(γt)βγ −

α′

4
λδ∂λβ(γst)

α
δ(γ

s)βγ (2.22)

which in turn follows from

: Nmnλα : (γm)αβ −
1

2
: Jλα : (γn)αβ = α′∂λα(γn)αβ (2.23)

Above identity (2.23) implies that the vertex operator V remains invariant under the following

field redefinition for an arbitrary tensor spinor Λβ
m

δFαmn = γmαβΛ
β
n − γnαβΛ

β
m , δEα = −γmαβΛβ

m , δAα = −2α′γmαβΛ
β
m (2.24)

Due to the nilpotency of the BRST operator Q, any vertex operator V also enjoys a gauge

freedom given by the transformation

V (z) → V (z) +QΩ(z) (2.25)

8

2.2 Unintegrated massive vertex operator at (mass)2 = 1
α′

In this subsection, we focus on the open string states at first mass level, i.e. m2 = 1
α′ . The

unintegrated vertex operator for these states was constructed in [1]. We review this construc-

tion below. As mentioned in the introduction, at the first mass level, the open string spectrum

comprises of 128 bosonic and 128 fermionic degrees of freedom contained in a traceless sym-

metric tensor gmn, a three-form field bmnp and a spin-3/2 field ψmα. These fields satisfy the

following constraints

ηmngmn = 0 ; ∂mgmn = 0 ; ∂mbmnp = 0 ; ∂mψmα = 0 ; γmαβψmβ = 0 (2.11)

Due to these constraints, the number of independent components in gmn, bmnp and ψmα is 44, 84

and 128 respectively. Further, these form a massive spin-2 supermultiplet in 10 dimensions.

The unintegrated vertex operator describing the physical states at mass level n, i.e.,m2 = n
α′

is constructed out of objects5 with ghost number 1 and conformal dimension n. Consequently,

the most general unintegrated vertex operator at first massive level (n = 1) of the open string

can be written as

V = ∂λαAα(X, θ)+ : ∂θβλαBαβ(X, θ) : + : dβλ
αCβ

α(X, θ) : + : ΠmλαHmα(X, θ) :

+ : JλαEα(X, θ) : + : NmnλαFαmn(X, θ) : (2.12)

where Aα, Bαβ, Cβ
α, Hmα, Eα and Fαmn are general superfields, unconstrained as of now. In

accordance with [1], the normal ordering : : is defined as follows

: AB : (z) ≡ 1

2πi

∮

z

dw

w − z
A(w)B(z) (2.13)

where, A and B are any two operators.

The equation of motion for the superfields in (2.12) is determined by the on-shell condition

QV = 0 which yields the following set of equations6

(γmnpqr)
αβ [DαBβσ − γsασHsβ] = 0 (2.14)

(γmnpqr)
αβ

[
DαHsβ − γsασC

σ
β

]
= 0 (2.15)

5These objects are constructed using Πm, ∂θα, dα,λα, J and Nmn.
6Note that some of the numerical factors in various expressions in this paper will not agree with that in [1]

since we are using different convention for (anti)symmetrization. See appendix A for details.
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The OPE among the various fields are given by 

which generates the following transformations

δXm = λγmθ , δθα = λα , δλα = 0 , δdα = −Πm(γmλ)α , δwα = dα (2.5)

where, dα and Πm are supersymmetric invariant combinations

dα = pα − 1

2
γmαβθ

β∂Xm − 1

8
γmαβγmσδθ

βθσ∂θδ (2.6)

Πm = ∂Xm +
1

2
γmαβθ

α∂θβ (2.7)

The OPE between various objects is given by

dα(z)dβ(w) = −
α′γmαβ

2(z − w)
Πm(w) + · · · , dα(z)Π

m(w) =
α′γmαβ

2(z − w)
∂θβ(w) + · · ·

dα(z)V (w) =
α′

2(z − w)
DαV (w) + · · · , Πm(z)V (w) = − α′

(z − w)
∂mV (w) + · · ·

Πm(z)Πn(w) = − α′ηmn

2(z − w)2
+ · · · , Nmn(z)λα(w) =

α′(γmn)αβ
4(z − w)

λβ(w) + · · ·

Nmn(z)Npq(w) = − 3(α′)2

2(z − w)2
ηm[qηp]n +

α′

(z − w)

(
ηp[nNm]q − ηq[nNm]p

)
+ · · ·

J(z)J(w) = − (α′)2

(z − w)2
+ · · · , J(z)λα(w) =

α′

2(z − w)
λα(w) + · · · (2.8)

where, V is an arbitrary superfield, ∂ denotes the derivative with respect to world-sheet coor-

dinate, ∂m denotes the derivative with respect to the spacetime coordinate Xm and

Dα ≡ ∂α + γmαβθ
β∂m (2.9)

denotes the supercovariant derivative. The · · · terms denote the non-singular terms.

The scattering of N external string states at tree level is described by the amplitude

AN = ⟨V 1V 2V 3

∫
U4 · · ·

∫
UN⟩ (2.10)

V and U in the above expression denote the unintegrated and integrated vertex operators

respectively. The correlation functions of pure spinor fields are computed using the OPEs

given in equation (2.8) and the identities of appendix C4.

After this brief recollection of general pure spinor results, we now turn to unintegrated

massive vertex operator.

4In appendix C, we only give the identities which are used in this paper. See [7] for a complete list.
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γmαβγmσδθ

βθσ∂θδ (2.6)

Πm = ∂Xm +
1

2
γmαβθ

α∂θβ (2.7)

The OPE between various objects is given by

dα(z)dβ(w) = −
α′γmαβ

2(z − w)
Πm(w) + · · · , dα(z)Π

m(w) =
α′γmαβ

2(z − w)
∂θβ(w) + · · ·

dα(z)V (w) =
α′

2(z − w)
DαV (w) + · · · , Πm(z)V (w) = − α′

(z − w)
∂mV (w) + · · ·
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+ · · · , Nmn(z)λα(w) =
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4(z − w)
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Nmn(z)Npq(w) = − 3(α′)2

2(z − w)2
ηm[qηp]n +

α′

(z − w)

(
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)
+ · · ·

J(z)J(w) = − (α′)2

(z − w)2
+ · · · , J(z)λα(w) =

α′

2(z − w)
λα(w) + · · · (2.8)

where, V is an arbitrary superfield, ∂ denotes the derivative with respect to world-sheet coor-

dinate, ∂m denotes the derivative with respect to the spacetime coordinate Xm and

Dα ≡ ∂α + γmαβθ
β∂m (2.9)

denotes the supercovariant derivative. The · · · terms denote the non-singular terms.

The scattering of N external string states at tree level is described by the amplitude

AN = ⟨V 1V 2V 3

∫
U4 · · ·

∫
UN⟩ (2.10)

V and U in the above expression denote the unintegrated and integrated vertex operators

respectively. The correlation functions of pure spinor fields are computed using the OPEs

given in equation (2.8) and the identities of appendix C4.

After this brief recollection of general pure spinor results, we now turn to unintegrated

massive vertex operator.

4In appendix C, we only give the identities which are used in this paper. See [7] for a complete list.
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 The tree level scattering amplitude for  N external states is given by

where, V and U are the unintegrated and integrated vertex operators

for the full vertex operator of the bmnp field.

For completeness, we also give the θ expansion of Gsm upto O(θ3)

Gsm = gsm − 16ikp(ψ(mγs)pθ) +
i

2
kp(θγp(mγ

nθ) gs)n +
1

3
kp(θγp(mγ

tqrθ)k|tbqr|s)

+
1

18
kp(θγp(mγ

ntqr
s) θ)knbtqr +

8

9
α′ktk

pkrk(s(θγm)pγ
tnqθ)(ψqγrnθ)

−8

3
ktkp(θγp(mγ

nθ)(ψ(nγs))tθ)−
4

3
ktk

p(θγp(mγ
tnqθ)(ψ[s)γnq]θ)

−2

9
ktk

p(θγp(mγ
tnrq

s) θ)(ψqγnrθ) + O(θ4)

5 3-point tree
〈
AAb

〉
amplitude

One of the applications of the results of previous section is in computing scattering amplitudes

involving the massive states in pure spinor formalism. Just for illustration, in this section, we

consider the 3-point tree amplitude involving 2 gluon fields13 (denoted by a(i)m ) and the 3-form

field bmnp. This amplitude was also considered in [26]. However, our result for θ expansion is

significantly different from that of [26]. Hence, we compute the contribution of terms in the

massive vertex operator upto O(θ3) to this amplitude and check that our result agrees with the

corresponding kinematic factor in the RNS formalism. The full amplitude acquires also the

contribution from higher θ components which we do not consider in this paper (see conclusion

for further comments regarding the full amplitude).

Since we shall only compute the 3-point function on the disk, the equation (2.10) tells us

that we need only the unintegrated vertex operator to compute the amplitude

A3 = ⟨V 1V 2V 3⟩ (5.1)

where, V i are the unintegrated vertex operators of interest (massive or massless).

The pure spinor measure is defined such that the bracket ⟨...⟩ gives non-zero answer if and

only if there are three λ and five θ zero mode inside it. Symbolically, this is often abbreviated

as ⟨λ3θ5⟩ ∼ 1. More precisely, the pure spinor measure is normalized as

⟨(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)⟩ = 1 (5.2)

We now outline the procedure for computing the tree amplitudes. Given 3 external states

whose tree level scattering we wish to compute, the basic strategy is as follows :

13The θ expansion of the massless fields is given in appendix D.
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 The above correlation function is normalised as 

Schematically
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involving the massive states in pure spinor formalism. Just for illustration, in this section, we

consider the 3-point tree amplitude involving 2 gluon fields13 (denoted by a(i)m ) and the 3-form

field bmnp. This amplitude was also considered in [26]. However, our result for θ expansion is

significantly different from that of [26]. Hence, we compute the contribution of terms in the

massive vertex operator upto O(θ3) to this amplitude and check that our result agrees with the

corresponding kinematic factor in the RNS formalism. The full amplitude acquires also the

contribution from higher θ components which we do not consider in this paper (see conclusion

for further comments regarding the full amplitude).

Since we shall only compute the 3-point function on the disk, the equation (2.10) tells us

that we need only the unintegrated vertex operator to compute the amplitude

A3 = ⟨V 1V 2V 3⟩ (5.1)

where, V i are the unintegrated vertex operators of interest (massive or massless).

The pure spinor measure is defined such that the bracket ⟨...⟩ gives non-zero answer if and

only if there are three λ and five θ zero mode inside it. Symbolically, this is often abbreviated

as ⟨λ3θ5⟩ ∼ 1. More precisely, the pure spinor measure is normalized as

⟨(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)⟩ = 1 (5.2)

We now outline the procedure for computing the tree amplitudes. Given 3 external states

whose tree level scattering we wish to compute, the basic strategy is as follows :

13The θ expansion of the massless fields is given in appendix D.
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The normal ordering is a nested contour integral  

z yn

y1

y2

: A1A2 · · ·An : (z)

⌘
I

dy1
y1 � z

A1(y1)

I
dy2

y2 � z
A2(y2) · · ·

I
dyn

yn � z
An(yn)

Technical Details

 Anti-Symmetrization 

tree amplitudes involving more than three massive states and two and higher loop amplitudes

involving any number of massive states require the integrated form of the vertex operator [29].

All these calculations are tedious and prone to error when performed manually. Hence, it is

more efficient to use a computer code to perform the θ expansion and for doing the amplitude

calculations [30].

This construction can be readily extended to obtain the first massive vertex operator in het-

erotic and type II superstring theories in the pure spinor formalism. For heterotic superstring,

we simply take the tensor product of the vertex given in this paper with the anti-holomorphic

vertex of the bosonic string. Whereas for the type II theories, we take the tensor product of

the holomorphic and anti-holomorphic copies of the vertex given here.

Along the way, we have also found the relations, hitherto unknown, which are obeyed by

the basic superfields Bmnp, Gmn and Ψmα which describe the massive spin-2 supermultiplet.

These relations are part of superspace description of massive spin-2 multiplet. Furthermore,

they are necessary to ensure that we have the correct physical degrees of freedom and are

pivotal to perform θ expansion.

Acknowledgments: We are deeply thankful to Ashoke Sen for suggesting to look into the

problem, for numerous illuminating discussions throughout the course of this work and for

very insightful comments on the draft. We would also like to thank Anirban Basu, Rajesh

Gopakumar and Satchitananda Naik for their encouragement and comments on the draft. The

work of MV was also supported by the SPM fellowship of CSIR. We also thank the people and

Government of India for their continuous support for theoretical physics.

A Summary of conventions

In this appendix, we give a summary of the notations and conventions we have used in this

paper.

• Our (anti)symmetrization convention is as follows

Anti-symmetrization : T [m1...mn] ≡ 1

n!
(Tm1...mn ± all permutations ) (A.1)

Symmetrization : T (m1...mn) ≡ 1

n!
(Tm1...mn + all permutations) (A.2)
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 Symmetrization
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A Summary of conventions

In this appendix, we give a summary of the notations and conventions we have used in this

paper.

• Our (anti)symmetrization convention is as follows
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 Super-covariant Derivative property

 Gamma p-form

• All antisymmetric products of gamma matrices are defined as

γm1...mp ≡ γ[m1...γmp] (A.3)

Anti-symmetrized product of p gamma matrices is sometimes referred to as p-form.

• Our convention for super-covariant derivative is

Dα = ∂α + (γm)αβθ
β∂m ; where ∂α ≡ ∂

∂θα
(A.4)

Therefore, the Clifford identity of gamma matrices implies

{Dα, Dβ} = 2(γm)αβ∂m =⇒ (γm)
αβDαDβ =

1

16
∂m (A.5)

In momentum space, this implies for the first massive state

km(γm)
αβDαDβ =

i

16
kmkm = − i

16α′ (A.6)

• All normal ordering of products of operators are considered to be generalized normal

ordering defined as follows-

: AB : (z) ≡ 1

2πi

∮

z

dw

w − z
A(w)B(z) , For any two operators A and B. (A.7)

B Useful identities involving gamma matrices in d=10

In this appendix, we write down the list of gamma matrix identities that were used in our

calculations. A useful reference for the more exhaustive list is [28]. Most of the manipulations

involving the gamma matrices were done with the help of the Mathematica package Gamma

[27].

We work solely with 16×16 gamma matrices in d = 10. These are the off-diagonal elements

of the 32× 32 gamma matrices Γm matrices satisfying

{Γm,Γn} = 2ηmnI32×32
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C Pure spinor superspace identities
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Unintegrated Vertex 
2.2 Unintegrated massive vertex operator at (mass)2 = 1

α′

In this subsection, we focus on the open string states at first mass level, i.e. m2 = 1
α′ . The

unintegrated vertex operator for these states was constructed in [1]. We review this construc-

tion below. As mentioned in the introduction, at the first mass level, the open string spectrum

comprises of 128 bosonic and 128 fermionic degrees of freedom contained in a traceless sym-

metric tensor gmn, a three-form field bmnp and a spin-3/2 field ψmα. These fields satisfy the

following constraints

ηmngmn = 0 ; ∂mgmn = 0 ; ∂mbmnp = 0 ; ∂mψmα = 0 ; γmαβψmβ = 0 (2.11)

Due to these constraints, the number of independent components in gmn, bmnp and ψmα is 44, 84

and 128 respectively. Further, these form a massive spin-2 supermultiplet in 10 dimensions.

The unintegrated vertex operator describing the physical states at mass level n, i.e.,m2 = n
α′

is constructed out of objects5 with ghost number 1 and conformal dimension n. Consequently,

the most general unintegrated vertex operator at first massive level (n = 1) of the open string

can be written as

V = ∂λαAα(X, θ)+ : ∂θβλαBαβ(X, θ) : + : dβλ
αCβ

α(X, θ) : + : ΠmλαHmα(X, θ) :

+ : JλαEα(X, θ) : + : NmnλαFαmn(X, θ) : (2.12)

where Aα, Bαβ, Cβ
α, Hmα, Eα and Fαmn are general superfields, unconstrained as of now. In

accordance with [1], the normal ordering : : is defined as follows

: AB : (z) ≡ 1

2πi

∮

z

dw

w − z
A(w)B(z) (2.13)

where, A and B are any two operators.

The equation of motion for the superfields in (2.12) is determined by the on-shell condition

QV = 0 which yields the following set of equations6

(γmnpqr)
αβ [DαBβσ − γsασHsβ] = 0 (2.14)

(γmnpqr)
αβ

[
DαHsβ − γsασC

σ
β

]
= 0 (2.15)

5These objects are constructed using Πm, ∂θα, dα,λα, J and Nmn.
6Note that some of the numerical factors in various expressions in this paper will not agree with that in [1]

since we are using different convention for (anti)symmetrization. See appendix A for details.
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can be written as
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The equation of motion for the superfields in (2.12) is determined by the on-shell condition

QV = 0 which yields the following set of equations6

(γmnpqr)
αβ [DαBβσ − γsασHsβ] = 0 (2.14)

(γmnpqr)
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[
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5These objects are constructed using Πm, ∂θα, dα,λα, J and Nmn.
6Note that some of the numerical factors in various expressions in this paper will not agree with that in [1]
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Step 1 Construct the most general scalar out basis of conformal weight 1 and ghost # 1
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the most general unintegrated vertex operator at first massive level (n = 1) of the open string
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The equation of motion for the superfields in (2.12) is determined by the on-shell condition

QV = 0 which yields the following set of equations6
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αβ [DαBβσ − γsασHsβ] = 0 (2.14)
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6Note that some of the numerical factors in various expressions in this paper will not agree with that in [1]

since we are using different convention for (anti)symmetrization. See appendix A for details.

7

Step 2 Solve                respecting the constraint  QV = 0

and α′ is the inverse of the string tension. One can use (2.2) to show that dα is spacetime

supersymmetric and satisfies the OPE’s [6]

dα(y)dβ(z) → −
α′

2(y − z)
γm

αβΠm(z), dα(y)Πm(z) →
α′

2(y − z)
γm

αβ∂θ
β(z), (2.3)

Πm(y)V (z) → −
α′

y − z
∂mV (z), dα(y)V (z) →

α′

2(y − z)
DαV (z),

where Πm = ∂xm + 1
2γ

m
αβθ

α∂θβ, V (x, θ) is an arbitrary ten-dimensional superfield,

and Dα = ∂
∂θα

+ γm
αβθ

β∂m is the supersymmetric covariant derivative which satisfies

{Dα, Dβ} = 2γm
αβ∂m.

The pure spinor constraint λγmλ = 0 implies that the canonical momentum for λα,

which will be called wα, only appears in combinations which are invariant under the gauge

transformation δwα = (γmλ)αΛm for arbitrary Λm. This implies that wα only appears

in the Lorentz-covariant combinations Nmn = 1
2 (wγmnλ) and J = wαλ

α. By solving

λγmλ = 0 in terms of unconstrained fields, one can show that Nmn and J satisfy the

OPE’s [4]

Nmn(y)λα(z) →
α′

4(y − z)
(γmn)α

βλ
β(z), J(y)λα(z) →

α′

2(y − z)
λα(z), (2.4)

Nkl(y)Nmn(z) → −
3(α′)2

4(y − z)2
ηk[nηm]l +

α′

2(y − z)
(ηm[lNk]n(z) − ηm[lNk]m(z)),

J(y)J(z) → −
(α′)2

(y − z)2
.

Furthermore, λγmλ = 0 implies that Nmnand J satisfy the relation

: Nmnλα : γmαβ −
1

2
: Jλα : γn

αβ = α′γn
αβ∂λ

α(z) (2.5)

where the normal-ordered product is defined as

: UA(z)λα(z) :=

∮
dy

y − z
UA(y)λα(z).

To prove (2.5), note that wα drops out of the left-hand side because λγmλ = 0. And the

coefficient in the normal ordering contribution α′γn
αβ∂λ

α can be determined by computing

the double pole of (2.5) with J using the OPE J(y)J(z) → − (α′)2

(y−z)2 .

When α′(mass)2 = n, open superstring vertex operators are constructed from arbi-

trary combinations of [xm, θα, dα,λα, Nmn, J ] which carry ghost number one and conformal

2

− : dγλ
αλβ [DαCγ

β + δγ
αEβ +

1

2
(γmn)γ

αFβmn] :

+λα∂λβ [DαAβ + Bαβ + α′γm
βγ∂mCγ

α −
α′

2
DβEα +

α′

4
(γmnD)βFαmn]

+ : JλαλβDαEβ : + : NmnλαλβDαFβmn :,

where : UAλαλβΣαβA(x, θ)(z) : =
∮

dy
y−z UA(y) λα(z)λβ(z)ΣαβA(z).

Since λγmλ = λγm∂λ =0, QV = 0 implies that the superfields ΦαA satisfy

(γmnpqr)
αβ[DαBβγ − γs

αγHsβ] = 0, (3.3)

(γmnpqr)
αβ[DαHsβ − γsαγCγ

β] = 0,

(γmnpqr)
αβ[DαCγ

β + δγ
αEβ +

1

2
(γst)γ

αFβst] = 0,

(γmnpqr)
αβ [DαAβ + Bαβ + α′γs

βγ∂sC
γ

α −
α′

2
DβEα +

α′

4
(γstD)βFαst]

= 2α′γαβ
mnpqrγ

vwxys
αβ ηstK

t
vwxy,

(γmnp)
αβ[DαAβ + Bαβ + α′γs

βγ∂sC
γ

α −
α′

2
DβEα +

α′

4
(γstD)βFαst]

= 16α′γαβ
mnpγ

wxy
αβ Ks

wxys,

γαβ
mnpqrDαEβ = γαβ

mnpqr(γ
vwxyγs)αβKs

vwxy,

γαβ
mnpqrDαF st

β = −γαβ
mnpqr(γ

vwxyγ[s)αβKt]
vwxy,

where Ks
vwxy is an arbitrary superfield. The possibility of introducing Kt

vwxy into the

right-hand side of (3.3) comes from the fact that for arbitrary Ks
vwxy,

− : Nstλ
αλβ : (γvwxyγ[s)αβKt]

vwxy+ : Jλαλβ : (γvwxyγs)αβKs
vwxy (3.4)

+α′λα∂λβ[2γvwxys
αβ ηstK

t
vwxy + 16γwxy

αβ Ks
wxys] = 0,

which follows from the identity

: Nstλ
αλβ : γs

βγ −
1

2
: Jλαλβ : γtβγ =

5α′

4
λα∂λβγtβγ −

α′

4
λδ∂λβ(γst)

α
δγ

s
βγ. (3.5)

To derive (3.5), first define

: UAλαλβ := lim
w→z

∮
Cw

dy

y − z
UA(y)λα(w)λβ(z) + lim

w→z

∮
Cz

dy

y − z
UA(y)λα(w)λβ(z) (3.6)
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Step 3 Take care of redundancy arising because of nilpotency of BRST operator  V ' V +Q⌦

Result
 One finds the following result [Berkovits, Chandia]

where γβγ
c Ψc

γ = 0 and (Ψc
γ)|θ=0 = ψc

γ is the spin 3
2 field. The remaining 44 bosonic degrees

of freedom in the SO(9) multiplet are described by the θ = 0 components of the superfield

Gbc = Dγ(bΨc) which satisfies ηbcG
bc = 0. Since Gmn is a spin-two superfield, one can

interpret Hnα as a D = 10 vector-spinor prepotential as in [10]. Note that in D = 4, a

similar role is played by a vector prepotential for a massive spin-two superfield [11] [12].

To complete the proof that Bmnp describes the massive spin-two multiplet of (5.1), it

will now be shown that B0bc = 0 when ka = 0 for a = 1 to 9. Comparing (5.3), (5.4) and

(5.5), one finds that

Y γ = 0, Zbc = h(γ[bΨc])γ, Hb
β = 96(h − 1)Ψb

β (5.6)

for some constant h. And (γmZmn)α = 0 implies that Z0bγ = −7h(γ0Ψb)γ . After using

the gauge parameter Ωα
2 to gauge (γmHm)α = 0, one learns from (5.3) that

DαB0bc = (4 − 16h)(γ0γ[bΨc])α. (5.7)

Using similar arguments as before, one can argue that the only solution to (5.7) is B0bc = 0

and h = 1
4 . To prove this, note that bobc = B0bc|θ=0 transforms under supersymmetry as

δbobc = (4−16h)(ϵγ0γ[bψc]). But there are no states in ΩP
A which transform in this manner,

so b0bc must vanish.

So (5.3) implies that Bmnp describes a massive spin-two multiplet. Furthermore, after

using the gauge parameters Ω4, Ω5mn and (2.7) to gauge-fix

Cα
β = (γmnpq)α

βCmnpq and γmαβFβmn = 0, (5.8)

the first three equations of (3.3) imply that [Hmα, Cmnpq, Eα, Fαmn] are determined from

Bmnp by the equations

Hp
α =

3

7
(γmnD)αBmnp, Cmnpq =

1

48
∂[mBnpq], Eα = 0, (5.9)

Fαmn =
7

16
∂[mHn]α −

1

16
∂q(γq[m)β

αHn]β,

and the trace of the seventh equation of (3.3) implies that

Ks
mnpq =

1

1920
(γαβ

mnpquDαF su
β −

1

72
γαβ

ru[mnpδ
s
q]DαF ru

β ). (5.10)

8

gauge fix 
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A↵ = 0

where γβγ
c Ψc

γ = 0 and (Ψc
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Plugging (5.9) and (5.10) into the fourth equation of (3.3) implies that γαβ
mnpqrDαAβ =

0, so one can gauge-fix Aβ = 0 using the remaining gauge transformation parameterized

by Ω1β . And plugging (5.9) and (5.10) into the fifth equation of (3.3) implies that

(∂m∂
m −

1

α′
)Bnpq = 0 (5.11)

so that (mass)2 = 1
α′ . Finally, the sixth equation and the traceless part of the seventh

equation of (3.3) provide no new information, as can be seen from the fact that if the first

five equations of (3.3) are satisfied,

QV =: J(λγmnpqrλ) : Smnpqr+ : Nst(λγ
mnpqrλ) : T st

mnpqr (5.12)

for some Smnpqr and traceless T st
mnpqr. But Q2 = 0 implies that

0 = Q[: J(λγmnqprλ) : Smnpqr+ : Nst(λγ
mnpqrλ) : T st

mnpqr] (5.13)

= −
α′

2
λαdα(λγmnqprλ)Smnpqr +

α′

4
(λγstd)(λγmnpqrλ)T st

mnpqr + ...

where ... does not involve dα. So Q2 = 0 implies that Smnpqr = T st
mnpqr = 0.

So it has been shown that the vertex operator of (2.6) describes a spin-two multiplet

with (mass)2 = 1
α′ in terms of ten-dimensional superfields.
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where ... does not involve dα. So Q2 = 0 implies that Smnpqr = T st
mnpqr = 0.

So it has been shown that the vertex operator of (2.6) describes a spin-two multiplet

with (mass)2 = 1
α′ in terms of ten-dimensional superfields.
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 What about the degrees of freedom? 

            describes massive supermultiplet.Bmnp

  Berkovits-Chandia’s rest frame analysis                       a spin 2 supermultiplet

possible since

 Our covariant description of this statement follows from the constraints we found  
   [Mritunjay, Subhroneel , S K ]

DαBmnp = 12(γ[mnΨp])α + 24α′ktk[m(γ|t|nΨp])α (3.4)

DαΨsβ =
1

16
Gsmγ

m
αβ +

i

24
kmBnps(γ

mnp)αβ −
i

144
kmBnpq(γsmnpq)αβ (3.5)

(γm)αβΨmβ = 0 ; kmΨmβ = 0 ; kmBmnp = 0 ; kmGmn = 0 & ηmnGmn = 0 (3.6)

We shall now argue as to how to arrive at above equations. To see that equations (3.1) and

(3.2) are the correct covariant generalizations of the rest frame results given in [1], we note that

the 128 fermionic degrees of freedom in the rest frame are contained in the spatial components

of Ψmβ, namely in Ψaβ. Similarly, the 44 Bosonic degrees of freedom are contained in Gab.

This means that Ψ0β, G0b and G00 must either be zero or should be determined in terms of

Ψaβ, Babc and Gab, since otherwise, we shall need to impose further constraints on Ψaβ and

Gab. However, it is easy to see that due to the rest frame constraints

(γa)
αβΨa

β = 0 , ηabGab = 0 , when ka = 0 (3.7)

we can’t construct Ψ0β and G00 in terms of Ψaβ and Gab consistent with rotational invariance

in the rest frame. Another way to argue this is to note that G00, G0a and Ψ0β belong to the

singlet, 9 and 16 representations of SO(9) group (which is the little group in the rest frame).

This means that these fields can not be expressed as linear combinations of the existing fields

Ψaβ, Babc and Gab (which form 128, 84 and 44 representations respectively of SO(9)). Hence,

Ψ0β, G00 and G0a must be zero in the rest frame10, i.e.

Ψ0β = 0 , G00 = 0 , G0a = 0 , when ka = 0 (3.8)

Now, the proposed generalizations (3.1) and (3.2) can be written as

Hmβ + 72Ψmβ = 0 , (γm)
αβΨm

β = 0 , Gmn − 2Dαγ
αβ
(mΨn)β = 0 , ηmnGmn = 0 (3.9)

which can alternatively be written in terms of their spatial and temporal components as

Haβ + 72Ψaβ = 0 , H0β + 72Ψ0β = 0 , (γa)
αβΨa

β + (γ0)
αβΨ0

β = 0

Gab − 2Dαγ
αβ
(a Ψb)β = 0 , G00 − 2Dαγ

αβ
(0 Ψ0)β = 0 , G0a − 2Dαγ

αβ
(0 Ψa)β = 0

ηabGab + η00G00 = 0 (3.10)

10For G0a, also see the footnote (11).
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  The lowest component of the upper superfields satisfy the constraints given earlier. 

  We next proceed to theta expansion.



Theta Expansion 

along with 
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freedom of the theory. In our case also, by looking at the coefficients in the θ expansion of the

superfields Bmnp, Gmn and Ψmα, we can easily convince ourselves that they contain much more

degrees of freedom than 128+128 provided by the physical fields gmn, bmnp and ψmα. Thus,

it is imperative that we express the higher θ components of these superfields in terms of the

physical fields thereby removing the redundant degrees of freedom.

To ensure that gmn, bmnp and ψmα are the only physical degrees of freedom, there must

be relations expressing DαΨmβ in terms of Gmn, Bmnp and DαGmn, DαBmnp in terms of Ψmα.

These will provide the recursive relations8 relating the higher θ components of the superfields

to the lowest components gmn, bmnp and ψmα. Along with these, the algebraic constraints such

as kmBmnp = 0 are also needed to remove the extra degrees of freedom at the zeroth order in θ

expansion. We need to ensure that all these relations are consistent with the on-shell condition

QV = 0 (or equivalently equations(2.14) to (2.20)).

In this section, we give the above mentioned relationships among the superfields. In the

process, we also give the covariant generalizations of the rest frame results (2.32) - (2.37) given

in section 2.2. We shall be very brief and just state the result. One can check the validity

of these by writing them in the rest frame and verifying that they agree with those in the

subsection 2.2 and satisfy all the equations. In appendix E, we indicate how to check this

systematically. For simplicity, we work in the momentum space in what follows9.

We start by recalling the rest frame results (2.31), (2.33), (2.34) and (2.37). We claim that

the covariant generalization of these results is given by

Hmβ = −72Ψmβ , (γm)
αβΨm

β = 0 (3.1)

and,

Gmn = 2Dαγ
αβ
(mΨn)β , ηmnGmn = 0 (3.2)

These results have the correct limit in the rest frame. Further, we also claim that the

relations between the various superfields and all the necessary constraints, which are needed

to ensure that superfields contain only the physical degrees of freedom, are given by

DαGsm = 16ikp(γp(sΨm))α (3.3)

8Note that the gauge invariance (2.25) has already been completely exploited in writing down the solution
(2.27).

9i.e. we replace all the ∂m by i km.
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of Ψmβ, namely in Ψaβ. Similarly, the 44 Bosonic degrees of freedom are contained in Gab.

This means that Ψ0β, G0b and G00 must either be zero or should be determined in terms of

Ψaβ, Babc and Gab, since otherwise, we shall need to impose further constraints on Ψaβ and

Gab. However, it is easy to see that due to the rest frame constraints

(γa)
αβΨa

β = 0 , ηabGab = 0 , when ka = 0 (3.7)

we can’t construct Ψ0β and G00 in terms of Ψaβ and Gab consistent with rotational invariance

in the rest frame. Another way to argue this is to note that G00, G0a and Ψ0β belong to the

singlet, 9 and 16 representations of SO(9) group (which is the little group in the rest frame).

This means that these fields can not be expressed as linear combinations of the existing fields

Ψaβ, Babc and Gab (which form 128, 84 and 44 representations respectively of SO(9)). Hence,

Ψ0β, G00 and G0a must be zero in the rest frame10, i.e.

Ψ0β = 0 , G00 = 0 , G0a = 0 , when ka = 0 (3.8)

Now, the proposed generalizations (3.1) and (3.2) can be written as

Hmβ + 72Ψmβ = 0 , (γm)
αβΨm

β = 0 , Gmn − 2Dαγ
αβ
(mΨn)β = 0 , ηmnGmn = 0 (3.9)

which can alternatively be written in terms of their spatial and temporal components as

Haβ + 72Ψaβ = 0 , H0β + 72Ψ0β = 0 , (γa)
αβΨa

β + (γ0)
αβΨ0

β = 0

Gab − 2Dαγ
αβ
(a Ψb)β = 0 , G00 − 2Dαγ

αβ
(0 Ψ0)β = 0 , G0a − 2Dαγ

αβ
(0 Ψa)β = 0

ηabGab + η00G00 = 0 (3.10)

10For G0a, also see the footnote (11).
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 A superfield       has the superfield expansion (we denote its components by small letters)S

D↵S|✓=0 = s

D↵S|✓l / (�m)↵�@ms↵1↵2···↵l�1✓
�✓↵1 · · · ✓↵l�1 + (l + 1)s↵↵2···↵l+1✓

↵2 · · · ✓↵l+1

S = s+ s↵✓
↵ + s↵1 ↵2✓

↵1✓↵2 + · · ·

 We denote superfield components by small letters

  Recall                                      D↵ = @↵ + (�m)↵�✓
�@m

  The action of super-Covariant derivative is given by 

 In particular

 Repeating this process we see that we can determine complete theta expansion.

 The lowest component of                                   are given by Bmnp , Gmn and  m↵ bmnp , gmn and  m↵



the procedure described above, the θ expansion of the Ψsβ field is given by

Ψsβ = ψsβ +
1

16
(γmθ)β gsm − i

24
(γmnpθ)βkmbnps −

i

144
(γ npqr

s θ)βknbpqr

− i

2
kp(γmθ)β(ψ(mγs)pθ)−

i

4
km(γ

mnpθ)β(ψ[sγnp]θ)−
i

24
(γ mnpq

s θ)βkm(ψqγnpθ)

− i

6
α′kmk

rks(γ
mnpθ)β(ψpγrnθ) +

i

288
α′(γmnpθ)βkmk

rks(θγ
q
nrθ) gpq

− i

192
(γmnpθ)βkm(θγ

q
[npθ)gs]q −

i

1152
(γsmnpqθ)βk

m(θγnptθ) g
qt

− i

96
kp(γmθ)β(θγpq(sθ) gm)q −

1

1728
(γmnpθ)βkm(θγ

tuvw
npsθ)ktbuvw

− 1

864α′ (γsθ)β(θγ
npqθ)bnpq −

1

10368
(γ mnpq

s θ)βkm(θγtuvwnpqθ)k
tbuvw

− 1

864
(γmθ)β(θγ

npqθ)bnpqkmks −
1

576
(γsmnpqθ)βk

m(θγtunθ)b pq
u kt

− 1

96α′ (γ
mθ)β(θγ

qr
(sθ)bm)rq +

1

96
(γmθ)β(θγ

nqrθ)knk(sbm)qr

+
1

96
(γmnpθ)βkm(θγ

r
q[nθ)bps]rk

q + O(θ4) (4.13)

Similarly, the θ expansion of the superfield Bαβ is given by

Bαβ = γmnp
αβ

[
bmnp + 12(ψpγmnθ) + 24α′krkm(ψpγrnθ) +

3

8
(θγ q

mn θ) gpq −
3i

4
(θγtumθ)ktbunp

+
3

4
α′krkm(θγ

q
rn θ) gpq −

i

24
(θγtuvwmnpθ)k

tbuvw − 1

6
iks (ψvγtuθ) (θγstuvmnpθ)

−4iαksktkm (θγtunθ) (ψpγsuθ) + iks (θγtmnθ) (ψpγstθ) + iks (θγtmnθ) (ψtγspθ)

+2iks (θγstmθ) (ψnγtpθ)− iks (θγstmθ) (ψtγnpθ) + O(θ4)

]
(4.14)

Since all the superfields appearing in the first massive vertex operator can be expressed fully

using the superfields Bαβ and Ψmα, the above results are enough to write down the θ expansion

of the unintegrated vertex operator upto O(θ3). In the next section, we shall give this result
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 The theta expansion for fermionic superfield is 

Result



 The theta expansion for bosonic superfields are  
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576
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qr
(sθ)bm)rq +

1

96
(γmθ)β(θγ

nqrθ)knk(sbm)qr

+
1

96
(γmnpθ)βkm(θγ
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q[nθ)bps]rk

q + O(θ4) (4.13)

Similarly, the θ expansion of the superfield Bαβ is given by

Bαβ = γmnp
αβ
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bmnp + 12(ψpγmnθ) + 24α′krkm(ψpγrnθ) +

3

8
(θγ q

mn θ) gpq −
3i

4
(θγtumθ)ktbunp

+
3

4
α′krkm(θγ
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rn θ) gpq −

i

24
(θγtuvwmnpθ)k

tbuvw − 1
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iks (ψvγtuθ) (θγstuvmnpθ)

−4iαksktkm (θγtunθ) (ψpγsuθ) + iks (θγtmnθ) (ψpγstθ) + iks (θγtmnθ) (ψtγspθ)

+2iks (θγstmθ) (ψnγtpθ)− iks (θγstmθ) (ψtγnpθ) + O(θ4)

]
(4.14)

Since all the superfields appearing in the first massive vertex operator can be expressed fully

using the superfields Bαβ and Ψmα, the above results are enough to write down the θ expansion

of the unintegrated vertex operator upto O(θ3). In the next section, we shall give this result

17

for the full vertex operator of the bmnp field.

For completeness, we also give the θ expansion of Gsm upto O(θ3)

Gsm = gsm − 16ikp(ψ(mγs)pθ) +
i

2
kp(θγp(mγ

nθ) gs)n +
1

3
kp(θγp(mγ

tqrθ)k|tbqr|s)

+
1

18
kp(θγp(mγ

ntqr
s) θ)knbtqr +

8

9
α′ktk

pkrk(s(θγm)pγ
tnqθ)(ψqγrnθ)

−8

3
ktkp(θγp(mγ

nθ)(ψ(nγs))tθ)−
4

3
ktk

p(θγp(mγ
tnqθ)(ψ[s)γnq]θ)

−2

9
ktk

p(θγp(mγ
tnrq

s) θ)(ψqγnrθ) + O(θ4)

5 3-point tree
〈
AAb

〉
amplitude

One of the applications of the results of previous section is in computing scattering amplitudes

involving the massive states in pure spinor formalism. Just for illustration, in this section, we

consider the 3-point tree amplitude involving 2 gluon fields13 (denoted by a(i)m ) and the 3-form

field bmnp. This amplitude was also considered in [26]. However, our result for θ expansion is

significantly different from that of [26]. Hence, we compute the contribution of terms in the

massive vertex operator upto O(θ3) to this amplitude and check that our result agrees with the

corresponding kinematic factor in the RNS formalism. The full amplitude acquires also the

contribution from higher θ components which we do not consider in this paper (see conclusion

for further comments regarding the full amplitude).

Since we shall only compute the 3-point function on the disk, the equation (2.10) tells us

that we need only the unintegrated vertex operator to compute the amplitude

A3 = ⟨V 1V 2V 3⟩ (5.1)

where, V i are the unintegrated vertex operators of interest (massive or massless).

The pure spinor measure is defined such that the bracket ⟨...⟩ gives non-zero answer if and

only if there are three λ and five θ zero mode inside it. Symbolically, this is often abbreviated

as ⟨λ3θ5⟩ ∼ 1. More precisely, the pure spinor measure is normalized as

⟨(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)⟩ = 1 (5.2)

We now outline the procedure for computing the tree amplitudes. Given 3 external states

whose tree level scattering we wish to compute, the basic strategy is as follows :

13The θ expansion of the massless fields is given in appendix D.
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Sample Computation 

 Recall that the amplitude will not involve any integrated vertex 
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field bmnp. This amplitude was also considered in [26]. However, our result for θ expansion is

significantly different from that of [26]. Hence, we compute the contribution of terms in the

massive vertex operator upto O(θ3) to this amplitude and check that our result agrees with the

corresponding kinematic factor in the RNS formalism. The full amplitude acquires also the

contribution from higher θ components which we do not consider in this paper (see conclusion

for further comments regarding the full amplitude).

Since we shall only compute the 3-point function on the disk, the equation (2.10) tells us

that we need only the unintegrated vertex operator to compute the amplitude

A3 = ⟨V 1V 2V 3⟩ (5.1)

where, V i are the unintegrated vertex operators of interest (massive or massless).

The pure spinor measure is defined such that the bracket ⟨...⟩ gives non-zero answer if and

only if there are three λ and five θ zero mode inside it. Symbolically, this is often abbreviated

as ⟨λ3θ5⟩ ∼ 1. More precisely, the pure spinor measure is normalized as

⟨(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)⟩ = 1 (5.2)

We now outline the procedure for computing the tree amplitudes. Given 3 external states

whose tree level scattering we wish to compute, the basic strategy is as follows :

13The θ expansion of the massless fields is given in appendix D.
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The SYM vertex is given by V 1,2 = �↵A1,2
↵

D Massless vertex operator

The massless spectrum contains the physical fields gluon and gluino denoted by am(x) = emeik·x

and ξα(x) = χαeik·x respectively. Each of them have 8 on-shell degrees of freedom. The pure

spinor unintegrated (V ) and integrated (U) vertex operators describing these fields are given

by

V = λαAα

U = ∂θαAα + ΠmAm + dαW
α +

1

2
NmnFmn

The θ expansion of various fields appearing in the vertex operators are [23–25]

Aα(X, θ) =
1

2
am(γ

mθ)α − 1

3
(ξγmθ)(γ

mθ)α − 1

32
Fmn(γpθ)α(θγ

mnpθ)

+
1

60
(γmθ)α(θγ

mnpθ)(∂nξγpθ) +
1

1152
(γmθ)α(θγ

mrsθ)(θγspqθ)∂rFpq + · · ·

Am(X, θ) = am − (ξγmθ)−
1

8
(θγmγ

pqθ)Fpq +
1

12
(θγmγ

pqθ)(∂pξγqθ)

+
1

192
(θγmrsθ)α(θγ

spqθ)(∂rFpq) + · · ·

Fmn(X, θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγ

pqθ)∂n]Fpq −
1

6
(θγ[mγ

pqθ)∂n]∂p(ξγqθ)

− 1

96
(θγ[mγ

rsθ)(θγspqθ)∂n]∂rFpq + · · ·

W α(X, θ) = ξα − 1

4
(γmnθ)αFmn +

1

4
(γmnθ)α(∂mξγnθ) +

1

48
(γmnθ)α(θγnγ

pqθ)∂mFpq

− 1

96
(γmnθ)α(θγnpqθ)∂m∂p(ξγqθ)−

1

1536
(γmnθ)α(θγnrsθ)(θγspqθ)∂r∂mFpq + · · ·

where, Fmn = 2∂[man] describes the gluon field strength.

E Consistency of the differential relations with QV = 0

In this appendix we give an outline of the proof that the relations given in section 3 are

consistent with the equations of motion (2.14) to (2.20) and among themselves. We indicate

30

[Harnard, Schinder ; Ooguri, Rahmfeld, Robins, Tannenhauser ]gluon

  We take the third vertex to be the massive  



1 1 3
1 3 1
3 1 1

V (1)
a V (2)

a Vb

1 1 3

1 3 1

3 1 1

Table 1: Possible distribution of five θ in the vertex operators due to first three terms of (5.3).

starts at O(θ). Since the dα term of the massive vertex operator will reduce the number of

θ zero modes from the massless vertices by one at a time, the minimum number of θ zero

modes supplied by the two massless vertices can be one for the amplitude. This means that

the contribution of the dβλαCβ
α term in the massive vertex operator will require the knowledge

of θ expansion upto O(θ4). Thus, we focus here only on the contributions coming from the first

3 terms in the right hand side of equation (5.3). The possible θ distribution for these terms

is shown in table 1. From this, it is clear that these three terms require the θ expansion only

upto O(θ3).

Using equations (2.27), (3.1) and the result of θ expansion for the superfields Bmnp and

Ψmα given in previous section, the θ expansion for the four terms in the above vertex operator

for bmnp field upto O(θ3) is given by

∂θβλαBαβ(X, θ) =

[
(λγmnp∂θ)bmnp −

i

24
(λγmnp∂θ)(θγtuvwmnpθ)k

tbuvw

−3i

4
(λγmnp∂θ)(θγtumθ)ktbunp

]

dβλ
αCβ

α(X, θ) =

[
i

2
(dγsmnpλ)ksbmnp +

1

48
(dγsmnpλ)(θγtuvwmnpθ)k

tksb
uvw

+
3

8
(dγsmnpλ)(θγtumθ)ktksbunp

]
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Distribution of      for non vanishing amplitude✓

 Recall that  h�3✓5i 6= 0

 Since 3     are present we need to find the sources of  � ✓

ΠmλαHmα(X, θ)

=

[
3iΠs(λγmnpθ)kmbnps +

i

2
Πs(λγ npqr

s θ)knbpqr −
3

4
Πs(λγmθ)(θγnqrθ)knk(sbm)qr

+
3

4α′Π
s(λγmθ)(θγqr(sθ)bm)rq +

1

12α′Π
s(λγsθ)(θγ

npqθ)bnpq +
1

12
Πs(λγmθ)(θγnpqθ)bnpqkmks

−3

4
Πs(λγmnpθ)km(θγ

r
q[nθ)bps]rk

q +
1

24
Πs(λγmnpθ)km(θγ

tuvw
npsθ)ktbuvw

+
1

8
Πs(λγsmnpqθ)k

m(θγtunθ)b pq
u kt +

1

144
Πs(λγ mnpq

s θ)km(θγtuvwnpqθ)k
tbuvw

]

NxsλαFαxs(X, θ)

= − 1

1152α′N
xs

[
−864(λγnθ)bnxs − 216(λγnpsθ)bnpx − 3240α(λγmnrθ)bmnxkskr

−72(λγnpqxsθ)b
npq − 648α(λγmnpxtθ)b

mnpksk
t − 378i(λγrθ)(θγ

mnrθ)bmnxks

−72i(λγtθ)(θγ
nrtθ)bnxskr − 378iα(λγtθ)(θγmnrθ)bmnxkskrkt − 378i(λγpθ)(θγmnxθ)b

mnpks

+84i(λγxθ)(θγ
npqθ)bnpqks + 144i(λγpθ)(θγnstθ)bnpxk

t − 12i(λγvθ)(θγnpqxsuvθ)b
npqku

+54i(λγsrtθ)(θγ
mntθ)bmnxk

r + 3i(λγ vw
s θ)(θγnpqxuvwθ)b

npqku + 18i(λγpqsθ)(θγnxuθ)b
npqku

−36i(λγp suθ)(θγ
ntuθ)bnpxkt + 54i(λγpstθ)(θγmnxθ)b

mnpkt − 12i(λγxstθ)(θγmnpθ)b
mnpkt

−540iα(λγntuθ)(θγmr
uθ)bmnxkskrkt + 45iα(λγvwuθ)(θγmnpxtvwθ)b

mnpksk
tku

+270iα(λγnpuθ)(θγmxtθ)b
mnpksk

tku − 54iα(λγpxuθ)(θγmntθ)b
mnpksk

tku

−18i(λγpqxsvθ)(θγ
uv

n θ)bnpqku − 9iα(λγ vwq
xu θ)(θγmnptvwqθ)b

mnpksk
tku

−i(λγxsvwmθ)(θγ
vwm

npqu θ)bnpqku − 162iα(λγnpxuvθ)(θγ
v

mt θ)b
mnpksk

tku

]

We now consider the above mentioned terms in the massive vertex operator and evaluate

their contribution. We shall indicate some steps for few terms below. We put the two gluons

at z1 and z2 and bmnp field at z3 on the world-sheet and use the notation

a(1)m (X) = e(1)m eip1·X , a(2)m (X) = e(2)m eip2·X , bmnp = emnpe
ik·X

where, the polarization tensors satisfy the transversality conditions

e(1)m pm1 = 0 , e(2)m pm2 = 0 , emnpk
m = 0 (5.4)

For the first type of terms, ∂θβλαBαβ in the bmnp vertex operator, we note that it contains

either zero or two θs. Hence, it will never contribute to this amplitude. So, we start with
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Transversality condition



After using the OPE and using normalisation stated earlier and adding all the contributions  

Next, we consider the NmnλαFαmn term of the massive vertex operator. Its first term gives,

I ′ ≡
〈(

1

2
a(1)r (λγrθ)

)(
− 1

32
F (2)
tu (λγvθ)(θγ

tuvθ)

)
864

1152α′N
xs(λγnθ)bnxs

〉

+

〈(
− 1

32
F (1)
tu (λγvθ)(θγ

tuvθ)

)(
1

2
a(2)r (λγrθ)

)
864

1152α′N
xs(λγnθ)bnxs

〉

= − 27

2304α′ e
(1)
r f (2)

tu enxs
〈
(λγrθ)(λγvθ)(θγ

tuvθ)Nxs(λγnθ)
〉
Γ(z1, z2, z3)

− 27

2304α′ e
(2)
r f (1)

tu enxs
〈
(λγvθ)(λγ

rθ)(θγtuvθ)Nxs(λγnθ)
〉
Γ(z1, z2, z3) (5.8)

where, Γ is the world-sheet correlator

Γ(z1, z2, z3) ≡
〈
: eip1·X(z1) :: eip2·X(z2) :: eik·X(z3) :

〉
=

z23z13
z12

To evaluate the pure spinor correlators, we first need to eliminate the Nxs field by using its

OPE with λα. We illustrate it with the second correlator of (5.8)

〈
: (λγvθ) : (z1) : (λγ

rθ)(θγtuvθ) : (z2) : N
xs(λγnθ) : (z3)

〉

=

∮

z3

dw

w − z3

〈
Nxs(w) : (λγvθ) : (z1) : (λγ

rθ)(θγtuvθ) : (z2) : (λγ
nθ) : (z3)

〉

= −α
′

4

∮

z1

dw

w − z3

〈
:

(
(γxs)ασλ

σ(γvθ)α(z1)

w − z1

)
:: (λγrθ)(θγtuvθ) : (z2) : (λγ

nθ) : (z3)

〉

−α
′

4

∮

z2

dw

w − z3

〈
: (λγvθ)(z1) ::

(
(γxs)ασλ

σ(γrθ)α(z2)

w − z2

)
(θγtuvθ)(z2) :: (λγ

nθ)(z3) :

〉

=
α′

4(z1 − z3)

〈
: (λγxsγvθ) : (z1) : (λγ

rθ)(θγtuvθ) : (z2)(λγ
nθ)(z3)

〉

+
α′

4(z2 − z3)

〈
: (λγvθ) : (z1) : (λγ

xsγrθ)(θγtuvθ) : (z2) : (λγ
nθ) : (z3)

〉

The first correlator in (5.8) can be similarly worked out. Thus, we obtain on using the pure

spinor correlators given in appendix C, the momentum conservation and the transversality of

the polarization tensors

I ′ =
i

5120
emnpe(1)p e(2)n (p2)m (5.9)

The contribution of other terms in the expression of NmnλαFαmn can be similarly worked out.

Their total contribution is given by

− i

8192
emnpe(1)p e(2)n (p2)m (5.10)
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for the full vertex operator of the bmnp field.

For completeness, we also give the θ expansion of Gsm upto O(θ3)

Gsm = gsm − 16ikp(ψ(mγs)pθ) +
i

2
kp(θγp(mγ

nθ) gs)n +
1

3
kp(θγp(mγ

tqrθ)k|tbqr|s)

+
1

18
kp(θγp(mγ

ntqr
s) θ)knbtqr +

8

9
α′ktk

pkrk(s(θγm)pγ
tnqθ)(ψqγrnθ)

−8

3
ktkp(θγp(mγ

nθ)(ψ(nγs))tθ)−
4

3
ktk

p(θγp(mγ
tnqθ)(ψ[s)γnq]θ)

−2

9
ktk

p(θγp(mγ
tnrq

s) θ)(ψqγnrθ) + O(θ4)

5 3-point tree
〈
AAb

〉
amplitude

One of the applications of the results of previous section is in computing scattering amplitudes

involving the massive states in pure spinor formalism. Just for illustration, in this section, we

consider the 3-point tree amplitude involving 2 gluon fields13 (denoted by a(i)m ) and the 3-form

field bmnp. This amplitude was also considered in [26]. However, our result for θ expansion is

significantly different from that of [26]. Hence, we compute the contribution of terms in the

massive vertex operator upto O(θ3) to this amplitude and check that our result agrees with the

corresponding kinematic factor in the RNS formalism. The full amplitude acquires also the

contribution from higher θ components which we do not consider in this paper (see conclusion

for further comments regarding the full amplitude).

Since we shall only compute the 3-point function on the disk, the equation (2.10) tells us

that we need only the unintegrated vertex operator to compute the amplitude

A3 = ⟨V 1V 2V 3⟩ (5.1)

where, V i are the unintegrated vertex operators of interest (massive or massless).

The pure spinor measure is defined such that the bracket ⟨...⟩ gives non-zero answer if and

only if there are three λ and five θ zero mode inside it. Symbolically, this is often abbreviated

as ⟨λ3θ5⟩ ∼ 1. More precisely, the pure spinor measure is normalized as

⟨(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)⟩ = 1 (5.2)

We now outline the procedure for computing the tree amplitudes. Given 3 external states

whose tree level scattering we wish to compute, the basic strategy is as follows :

13The θ expansion of the massless fields is given in appendix D.
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 We had done theta expansion by hand upto cubic order in theta.

 The above amplitude however also receives contribution from quartic order.  

 We developed a Mathematica code that reproduces our result and can compute to all order.  

 This however is part of a future publication. 



ONGOING AND FUTURE WORK 
• Use of integrated form of the vertex is required for computing loop amplitudes and a lot 
  of tree amplitude for the  massive states. We are currently working on finding this vertex  
  and are very close to completion.  

• After finding the integrated vertex we plan to compute various kinds of tree and one loop  
  amplitudes. 

• Final goal is to compute two loop renormalisation in heterotic strings which was the  
   motivation for starting this project. 



 There are huge number of terms and gamma matrix algebra involved in these computations.  
    These however are no hurdle for computers. The amplitude computation is highly  
   algorithmic and can be coded in very user friendly CAS like CADABRA and Mathematica.  

COMMENTS

 Pure spinor superstring was formulated in year 2000 and the indispensable use of computers 
     and its adaptability to computers make Pure spinor truly a 21st century formulation.  

We thank Kasper Peters for developing CADABRA and U. Gran for  
     developing GAMMA   

Thank You 



Advertisement
 Pure spinor does not make easy computation easier, but, makes difficult computations  

    possible in practise.

 The only 3 loop string amplitude is computed in pure spinors [Mafra, H. Gomez]

 p-loop 4 graviton amplitude vanishes above one loop. [N. Berkovits] 

Chapter 2 - Pure spinor formalism

The λ and C integrals in (2.30) can be evaluated by Lorentz invariance:

∫

[dC][dλ]λαλβλγC1
α1

· · ·C11
α11
δ(C1λ) · · · δ(C11λ) = (ϵT )αβγα1···α11

. (2.75)

Using this result (2.30) becomes

A =

∫

d16θfαβγ(θ)(ϵT )αβγα1···α11
θα1 · · · θα11 , (2.76)

which coincides with the non-minimal result (2.66). At higher loops there does not
exist such a general proof, but in [33] the non-minimal one- and two-loop four-point
functions are shown to coincide with their minimal counterparts. The most recent
computation, the five-point one-loop amplitude, has only been computed in the non-
minimal formalism [34]. In chapter 4 formal equivalence between the minimal and
and non-minimal formalism will be proved by providing a first principles derivation
from the same starting point for both minimal and non-minimal.

The power of the pure spinor formalism is not only illustrated by the fact that
the complexity of all the amplitudes mentioned in the previous paragraph does not
depend on the number of external fermions (unlike RNS). In addition there exists a
number of non-renormalisation theorems that have been proved in the pure spinor
formalism and not in RNS. Four theorems are listed below in chronological order.
It is also indicated which formalism is used in the reference.

• The p-loop four graviton function vanishes above one loop [22] (minimal). In
other words the R4 term in the low energy effective action does not receive
perturbative corrections above one loop. This is a consequence of a conjectured
selfduality of type IIB string theory, S-duality. In the RNS formalism the
conjecture was verified only at two loops after much effort [11].

• The massless N -point multiloop (g ≥ 2) function vanishes whenever N < 4
[22] (minimal). This result is the main ingredient of the proof of perturba-

tive finiteness of string theory. As explained in [22] the only other possible
obstruction to proving perturbative finiteness is the existence of unphysical
divergences in the interior of moduli space. Such divergences are not expected
in the pure spinor formalism. Within the RNS formalism there are no results
beyond two loops.

• In [35] (non-minimal) two more conjectures based on string dualities are pre-
sented and subsequently proved. The first theorem states that when 0 < n <
12, ∂nR4 terms do not receive perturbative corrections above n/2 loops. The
second theorem states that when n ≤ 8, perturbative corrections to ∂nR4

terms in the IIA and IIB effective actions coincide.
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(p,theta) is bc cft with lambda=1 so that for each pair c=1.  
 (w,lambda) is beta-gamma system each pair gives c=1.

2.8.1 Tree-level prescription

N-point tree-level scattering amplitudes are computed by a correlation function with three

unintegrated vertices (2.68) and N − 3 integrated vertices (2.69),

A = ⟨NV 1V 2V 3

∫
U4· · ·

∫
UN ⟩. (2.84)

The computation of (2.84) proceeds as usual in a CFT. First one integrates out the

conformal weight one variables through their OPE’s to get an expression containing only

zero modes for λ’s and θ’s,

A =

∫
[dλ][dλ][dr]d16θNλαλβλγfαβγ(θ).

The measures [dλ], [dλ] and [dr] are given by

[dλ]λαλβλγ = ϵρ1...ρ11κ1...κ5
T ((αβγ))[κ1κ2κ3κ4κ5]dλρ1. . .dλρ11 (2.85)

[dλ]λαλbλγ = ϵα1...α11κ1...κ5T((αβγ))[κ1κ2κ3κ4κ5] dλα1
· · · dλα11

(2.86)

[dr] = ϵα1...α11κ1...κ5
T ((αβγ))[κ1κ2κ3κ4κ5]λαλβλγ ∂

α1

r · · ·∂α11

r (2.87)

This is almost the same recipe as in the minimal formalism, the difference is the

insertion of a regularization factor N , where

N = exp({Q,χ}) = e−(λλ)−(rθ) for χ = −(λθ).

The purpose of the regularization factor is due to the fact that the integration over λ and

λ may diverge because they are non-compact. However, as N = 1 + QΩ the integral will

be independent of the choice for the regularization.

Using the measures (2.85) – (2.87) one can show that

A =

∫
[dλ][dλ][dr]d16θNλαλβλγfαβγ(θ) = ⟨λαλβλγfαβγ(θ)⟩

and therefore the non-minimal prescription for tree-level amplitudes is equivalent to the

minimal pure spinor formalism.

2.8.2 Multiloop prescription

The prescription to compute g−loop amplitudes is given by

A =

∫
d3g−3τ⟨N (y)

3g−3∏

i=1

(

∫
dwiµi(wj)b(wj))

N∏

j=1

∫
dzjU(zj)⟩ (2.88)
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Integrating out the conformal fields @✓↵, ⇧m, d↵ and Npq leaves us with a power series

f↵��(✓, zj) in ✓, contracted with the �↵ ghosts:

*
V1

n�2Y

j=2

Z
dzj Uj(zj) Vn�1 Vn

+
=

n�2Y

j=2

Z
dzj h�↵ �� �� f↵��(✓; zj) i (10.3.47)

The specific form of f↵�� in terms of SYM superfield follows from the OPE contractions dis-

cussed above. Since the amplitude is made of BRST closed ingredients V and
R

dz U , also the

final answer must be BRST closed. This constrains f↵�� to satisfy

n�2Y

j=2

Z
dzj �↵ �� �� �� D�f↵��(✓; zi) = 0 . (10.3.48)

It turns out that among all the occurring ✓k powers k = 0, 1, . . . , 16, only ✓5 yields a consistent

nonzero correlation function:

h�↵ �� �� f↵��(✓) i =
D

�↵ �� �� f↵��(✓)
���
✓5

E
(10.3.49)

More precisely, the h . . . i brackets have to be evaluated via

h (� �m ✓) (� �n ✓) (� �p ✓) (✓ �mnp ✓) i = 1 . (10.3.50)

This is justified by the fact that the unique element in the BRST cohomology at ghost number

three is proportional to ✓5. Let us prove that the expression within the h . . . i bracket indeed

belongs to the BRST cohomology:

• BRST closedness follows from the pure spinor constraint (��m�) = 0 and its particular

form (��m)↵(��m)� = 0.

• Expressions of the form �3 ✓5 cannot be BRST exact ⇠ Q(�2 ✓6) because one cannot build

a Lorentz scalar from two �↵ and six ✓�: The bispinor �↵�� = 1
3840(��mnpqr�)�↵�

mnpqr only

has a five-form component and it can be checked using the LiE program [309] that its

tensor product with an antisymmetric six-spinor ✓[↵1 . . . ✓↵6] does not contain any Lorentz

scalar2.

• Uniqueness follows from the fact that the tensor product of three �↵ and five ✓� contains

one scalar.

2It is essential that the five form is the only SO(1, 9) irreducible in a pure bispinor: The vector (��
m

�)�↵�

m
is

absent due to the pure spinor constraint, and the three form vanishes because of the antisymmetry �
mnp

↵�
= �

mnp

[↵�] .



Chapter 2 - Pure spinor formalism

2.1 Minimal pure spinor formalism

The worldsheet action in the minimal pure spinor formalism for the left movers in
conformal gauge and flat target space is given by

S =

∫

d2z

(

1

2
∂xm∂̄xm + pα∂̄θ

α − wα∂̄λ
α

)

, (2.1)

with m = 0, . . . , 9 and α = 1, . . . , 16. The fields pα and wα have conformal weight
one and are Weyl spinors, θα and λα have conformal weight zero and are Weyl spinor
of opposite chirality. In addition λα is a pure spinor, i.e. it satisfies

λαγm
αβλ

β = 0, (2.2)

where γm
αβ are the ten dimensional Pauli matrices, which are defined in section 3.2.

The decomposition of a Weyl spinor under the SU(5) subgroup, 16 → 1 ⊕ 1̄0 ⊕ 5,
which is used intensively throughout this work, is also discussed there. Since the
worldsheet action consists of two βγ systems quantisation seems straightforward,
but λα is a pure spinor and therefore the λw part is actually a curved βγ system
[21]. To deal with this we work on a patch in pure spinor space that is defined by
λ+ ≠ 0. On this patch the pure spinor condition expresses λa in terms of λab and
λ+, with a, b = 1, . . . , 5. The solution is (in SU(5) covariant components)

λa =
1

8

1

λ+
ϵabcdeλbcλde. (2.3)

A constraint on fields in the action induces a gauge invariance on the conjugate
fields. In this case the gauge transformations are given by

δwα = Λmγ
m
αβλ

β . (2.4)

In the original papers, e.g. [22], this gauge invariance is dealt with by only using
gauge invariant quantities. This means wα can only appear in the Lorentz current
Nmn, the ghost number current J and the stress energy tensor T(λw):

Nmn =
1

2
wα(γmn)αβλ

β , J = wαλ
α, T(λw) = wα∂λ

α. (2.5)

Since the λw part of the action is not free due to the pure spinor constraint it is
not obvious what the OPE between w and λ will be. One way to proceed is by
properly fixing the gauge invariance of (2.4). By making the gauge choice wa = 0
and employing BRST methods, one can replace

∫

d2zwα∂̄λα by the free action,
∫

d2z(ω+∂̄λ
+ +

1

2
ωab∂̄λab). (2.6)

The details can be found in section 3.3.2. One might have expected BRST ghosts
associated to the gauge fixing of wα. It turns out these can be integrated out. As a
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date nobody has succeeded in substantiating this conjecture, although the authors
of [23] describe how it is possible to obtain the pure spinor formalism as a twisted
version of a gauge fixed string theory with diffeomorphism invariance. In chapter 4
the worldsheet action in conformal gauge will be derived by gauge fixing a worldsheet
action with diffeomorphism symmetry. However the 2d coordinate invariant action
is already invariant under QS , the gauge fixing of the diffeomorphisms gives rise to
a second nilpotent fermionic operator. This is a different point of view where QS is
not a BRST operator of fixing 2d coordinate invariance.

The main motivation to introduce the pure spinor formalism is its manifest su-
persymmetry. This symmetry is generated by

qα =

∮

dz(pα +
1

2
γm
αβθ

β∂xm +
1

24
γm
αβ(γm)γδθ

βθγθδ). (2.12)

2.1.1 Spectrum

Physical states are defined as element of the cohomology of QS with Jλw charge one
and conformal weight zero. In theories derived from a worldsheet diffeomorphism
invariant action, the conformal weight constraint follows from the condition that
physical states must be annihilated by the BRST operator. In the case of the pure
spinor action the operator QS does not impose a constraint on the conformal weight
and it has to be included by hand. In chapter 4 the origin of conformal weight
constraint is explained from first principles in the case of the pure spinor formalism.
The reason to look at ghost number one states is more subtle. At least one can say
that the cohomology at this Jλw charge yields the super-Maxwell multiplet (for the
open string).

Hence elements of the physical spectrum satisfy:

QSV (z) = 0, V (z) ∼ V (z) + QSΩ(z). (2.13)

Let us focus on the massless spectrum. The most general vertex operator (before
imposing the above conditions) at Jλw charge one with conformal dimension zero
and k2 = 0 is given by

V (z) = eik·X(z,z̄)λα(z)Aα(θ(z)). (2.14)

A number of comments are in order

• For the X sector one uses the standard operators (1.116) and note that the
weight is only non positive when no derivatives on X are present.

• The weight of the p, θ and w,λ sector is only non positive when V only contains
λ and θ.
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10.1.1 Matter fields of the pure spinor CFT

The worldsheet variables of the pure spinor formalism are very close to the GS approach: The

embedding coordinates Xm are accompanied by a SO(1, 9) spacetime spinor variable ✓↵ rather

than a worldsheet spinor  m. More precisely, ✓↵ is a right handed Majorana Weyl spinor with

16 real components. As proposed by Warren Siegel [298], the conjugate momenta p↵ for ✓↵ are

treated as additional free variables. This idea was invented to cure the problems in quantizing

the GS superstring. The matter degrees of freedom in the pure spinor formalism are described

by Siegel’s modification to the GS action:

S[X, p, ✓] =
1

4⇡

Z
d2z

⇢
1

2
@Xm @̄Xm + p↵ @̄✓

↵ + p̄�̂ @✓̄
�̂

�
(10.1.1)

Depending on the SO(1, 9) chirality of the right moving spinors (p̄�̂, ✓̄�̂) 2
�
(p̄�, ✓̄�), (p̄�, ✓̄�)

 
,

(10.1.1) gives rise to type IIA or type IIB closed superstring theory. Since we are interested in

open string scattering in this work, we won’t follow this issue any further and ignore the right

movers from now on.

The action (10.1.1) is invariant under spacetime supersymmetry transformations

�⌘X
m =

1

2
(⌘ �m ✓) , �⌘✓

↵ = ⌘↵ (10.1.2)

�⌘p↵ = �
1

2
@Xm (⌘ �m)↵ +

1

8
(⌘ �m ✓) (@✓ �m)↵ (10.1.3)

genenerated by the charge

Q↵ =

I
dz

2⇡i

⇢
p↵ +

1

2
�m

↵� ✓
� @Xm +

1

24
(�m ✓)↵ (✓ �m @✓)

�
. (10.1.4)

contracted with a spinorial parameter ⌘↵. Hence it makes sense to introduce supersymmetric

versions ⇧m and d↵ of the original variables @Xm and p↵:

⇧m := @Xm +
1

2
(✓ �m @✓) (10.1.5)

d↵ := p↵ �
1

2

✓
@Xm +

1

4
(✓ �m @✓)

◆
(�m ✓)↵ (10.1.6)

The latter also appears in the Green Schwarz formalism as a fermionic constraint d↵ = 0.

The action (10.1.1) defines a CFT governed by the energy momentum tensor

T = �
1

2
⇧m ⇧m � d↵ @✓

↵ . (10.1.7)

It identifies @Xm, ⇧m, p↵ and d↵ as h = 1 primary fields subject to the following OPEs:

⇧m(z) ⇧n(w) ⇠
� ⌘mn

(z � w)2
+ . . . , ⇧m(z) ek·X(w) ⇠

� km

z � w
ek·X(w) + . . .

SUSY trans


