Role of Complexified Supersymmetric Solutions

Masazumi Honda

(本多正純)

Reference:

M.H., arXiv:1710.05010 [hep-th], to be published in PRL

Title is changed by PRL:

Supersymmetric solutions and Borel singularities for N=2 supersymmetric Chern–Simons theories

25th, Jun. 2018

Strings 2018 @OIST

In SUSY theories,

[∃] configurations

which formally satisfy SUSY conditions: Q(fields) = 0but are not on original path integral contour. In SUSY theories,

[∃]configurations

which formally satisfy SUSY conditions: Q(fields) = 0but are not on original path integral contour.

Let us call them

"Complexified SUSY solutions"

What are their physical roles?

What are physical roles of complexified SUSY solutions?

Our proposal for a part of answers:

What are physical roles of complexified SUSY solutions?

Our proposal for a part of answers:

they provide important information on large order behavior of perturbative series in SUSY QFT

Preparation: Borel resummation

Borel transformation:

$$\mathcal{O}(g) \simeq \sum_{\ell=0}^{\infty} c_{\ell} g^{a+\ell} \qquad \Longrightarrow \qquad \mathcal{BO}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}}{\Gamma(a+\ell)} t^{a+\ell-1}$$

Preparation: Borel resummation

Borel transformation:

$$\mathcal{O}(g)\simeq\sum_{\ell=0}^{\infty}c_\ell g^{a+\ell}$$

$$\mathcal{BO}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}}{\Gamma(a+\ell)} t^{a+\ell-1}$$

Borel resummation (along R+) :

$$S_0\mathcal{O}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} \ \mathcal{BO}(t)$$

Preparation: Borel resummation

Borel transformation:

$$\mathcal{O}(g) \simeq \sum_{\ell=0}^{\infty} c_{\ell} g^{a+\ell} \qquad \Longrightarrow \qquad \mathcal{BO}(t) = \sum_{\ell=0}^{\infty} \frac{c_{\ell}}{\Gamma(a+\ell)} t^{a+\ell-1}$$

Borel resummation (along R+) :

$$S_0\mathcal{O}(g) = \int_0^\infty dt \ e^{-\frac{t}{g}} \ \mathcal{BO}(t)$$

Locations of **Borel singularities** determine

- Whether or not perturbative series are Borel summable
- factorial divergence of perturbative series:

$$\mathcal{BO}(t) \sim \frac{1}{t - t_0} \quad \Longrightarrow \quad c_\ell \sim \frac{\ell!}{t_0^\ell}$$

Idea:

Conjecture:

Idea:

Bosonic solution \longleftrightarrow

Fermionic solution \longleftrightarrow

Conjecture:

<u>Idea:</u>

- Bosonic solution \longleftrightarrow Pole of Borel trans.
- Fermionic solution $\leftarrow \rightarrow$ Zero of Borel trans.

Conjecture:

<u>Idea:</u>

Bosonic solution \longleftrightarrow Pole of Borel trans.

Fermionic solution \longleftrightarrow Zero of Borel trans.

Conjecture:

If there are n_B bosonic & n_F fermionic solutions with action S=S_c/g, then (in the same topological sector)

(Borel trans.)
$$\supset \prod_{\text{solutions}} \frac{1}{(t-S_c)^{n_B-n_F}}$$

In poster:

We explicitly check (

Borel trans.)
$$\supset \prod_{\text{solutions}} \frac{1}{(t-S_c)^{n_B-n_F}}$$

for SUSY observables in 3d N=2 SUSY Chern-Simons matter theories

In poster:

We explicitly check

Borel trans.)
$$\supset \prod_{\text{solutions}} \frac{1}{(t-S_c)^{n_B-n_F}}$$

for SUSY observables in 3d N=2 SUSY Chern-Simons matter theories

- construct ∞ complexified SUSY sols. in general 3d N=2 SUSY theory on S³ with Lagrangian
 - comparison of their actions & Borel singularities for "1/k-expansion" (=perturbative series by inverse CS level)

In poster:

We explicitly check

Borel trans.)
$$\supset \prod_{\text{solutions}} \frac{1}{(t-S_c)^{n_B-n_F}}$$

for SUSY observables in 3d N=2 SUSY Chern-Simons matter theories

 construct ∞ complexified SUSY sols. in general 3d N=2 SUSY theory on S³ with Lagrangian

 comparison of their actions & Borel singularities for "1/k-expansion" (=perturbative series by inverse CS level)

Related progress not in poster:

- Resurgence [Fujimori-M.H.-Kamata-Misumi-Sakai'18]
- SUSY breaking & complexified SUSY sols. [M.H., work in progress]
- Spectrum of complexified SUSY sols. & effective action [M.H., work in progress]

Thanksl