M-theory S-Matrix from 6d CFT

Shai M. Chester Princeton University

Based on arXiv:1805.00892 with E. Perlmutter

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

• Protected terms from type IIA string theory + duality [Green,Tseytlin]: $\mathcal{A}_{R^4} = \mathcal{A}_R \frac{stu}{3\cdot 2^7}, \quad \mathcal{A}_{D^2R^4} = \mathcal{A}_{D^4R^4} = 0, \quad \mathcal{A}_{D^6R^4} = \mathcal{A}_R \frac{(stu)^2}{15\cdot 2^{15}}.$

• Goal: Find all tree level terms $A_{D^{2m}B^4}$ for m > 3 using AdS/CFT.

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

• Protected terms from type IIA string theory + duality [Green,Tseytlin]: $\mathcal{A}_{R^4} = \mathcal{A}_R \frac{stu}{3\cdot 2^7}, \quad \mathcal{A}_{D^2R^4} = \mathcal{A}_{D^4R^4} = 0, \quad \mathcal{A}_{D^6R^4} = \mathcal{A}_R \frac{(stu)^2}{15\cdot 2^{15}}.$

• Goal: Find all tree level terms $A_{D^{2m}R^4}$ for m > 3 using AdS/CFT.

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

• Protected terms from type IIA string theory + duality [Green,Tseytlin] : $\mathcal{A}_{R^4} = \mathcal{A}_R \frac{stu}{3\cdot 2^7}, \quad \mathcal{A}_{D^2R^4} = \mathcal{A}_{D^4R^4} = 0, \quad \mathcal{A}_{D^6R^4} = \mathcal{A}_R \frac{(stu)^2}{15\cdot 2^{15}}.$

• Goal: Find all tree level terms $A_{D^{2m}B^4}$ for m > 3 using AdS/CFT.

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum ($\ell_{11} \ll 1$) expansion:

- Protected terms from type IIA string theory + duality [Green,Tseytlin] : $\mathcal{A}_{R^4} = \mathcal{A}_R \frac{stu}{3\cdot 2^7}, \quad \mathcal{A}_{D^2R^4} = \mathcal{A}_{D^4R^4} = 0, \quad \mathcal{A}_{D^6R^4} = \mathcal{A}_R \frac{(stu)^2}{15\cdot 2^{15}}.$
- Goal: Find all tree level terms $A_{D^{2m}R^4}$ for m > 3 using AdS/CFT.

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study (2,0) A_{N-1} 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.
- We compute: $\mathcal{G}_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle \mathcal{O}_k^1 \mathcal{O}_k^2 \mathcal{O}_k^3 \mathcal{O}_k^4 \rangle$ of *k*-th lowest dimension half-BPS operators in CFT₆ in large *N* expansion.

•
$$U \equiv \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 are conformal cross ratios

- \mathcal{G}_k dual to correlator of *k*-th lowest KK modes of M-theory on $AdS_7 \times S^4$.
- Flat space limit of \mathcal{G}_k gives 11d S-matrix $\mathcal{A}|_{7d}$ with momenta restricted to 7d.

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study (2,0) A_{N-1} 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.
- We compute: $\mathcal{G}_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle \mathcal{O}_k^1 \mathcal{O}_k^2 \mathcal{O}_k^3 \mathcal{O}_k^4 \rangle$ of *k*-th lowest dimension half-BPS operators in CFT₆ in large *N* expansion.

•
$$U \equiv \frac{x_{12}^2 x_{24}^3}{x_{13}^2 x_{24}^2}, V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 are conformal cross ratios

- G_k dual to correlator of *k*-th lowest KK modes of M-theory on $AdS_7 \times S^4$.
- Flat space limit of \mathcal{G}_k gives 11d S-matrix $\mathcal{A}|_{7d}$ with momenta restricted to 7d.

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study (2,0) A_{N-1} 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.
- We compute: $\mathcal{G}_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle \mathcal{O}_k^1 \mathcal{O}_k^2 \mathcal{O}_k^3 \mathcal{O}_k^4 \rangle$ of *k*-th lowest dimension half-BPS operators in CFT₆ in large *N* expansion.

•
$$U \equiv \frac{\chi_{12}^2 \chi_{24}^2}{\chi_{13}^2 \chi_{24}^2}, V \equiv \frac{\chi_{14}^2 \chi_{23}^2}{\chi_{13}^2 \chi_{24}^2}$$
 are conformal cross ratios

- G_k dual to correlator of *k*-th lowest KK modes of M-theory on $AdS_7 \times S^4$.
- Flat space limit of \mathcal{G}_k gives 11d S-matrix $\mathcal{A}|_{7d}$ with momenta restricted to 7d.

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study (2,0) A_{N-1} 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.
- We compute: $\mathcal{G}_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle \mathcal{O}_k^1 \mathcal{O}_k^2 \mathcal{O}_k^3 \mathcal{O}_k^4 \rangle$ of *k*-th lowest dimension half-BPS operators in CFT₆ in large *N* expansion.

•
$$U \equiv \frac{x_{12}^2 x_{24}^3}{x_{13}^2 x_{24}^2}, V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 are conformal cross ratios.

- G_k dual to correlator of *k*-th lowest KK modes of M-theory on $AdS_7 \times S^4$.
- Flat space limit of \mathcal{G}_k gives 11d S-matrix $\mathcal{A}|_{7d}$ with momenta restricted to 7d.

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study (2,0) A_{N-1} 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.
- We compute: $\mathcal{G}_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle \mathcal{O}_k^1 \mathcal{O}_k^2 \mathcal{O}_k^3 \mathcal{O}_k^4 \rangle$ of *k*-th lowest dimension half-BPS operators in CFT₆ in large *N* expansion.

•
$$U \equiv \frac{x_{12}^2 x_{24}^3}{x_{13}^2 x_{24}^2}, V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 are conformal cross ratios.

- G_k dual to correlator of *k*-th lowest KK modes of M-theory on $AdS_7 \times S^4$.
- Flat space limit of \mathcal{G}_k gives 11d S-matrix $\mathcal{A}|_{7d}$ with momenta restricted to 7d.

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study (2,0) A_{N-1} 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $AdS_7 \times S^4$.
- We compute: $\mathcal{G}_k(U, V) = x_{12}^{2k} x_{34}^{2k} \langle \mathcal{O}_k^1 \mathcal{O}_k^2 \mathcal{O}_k^3 \mathcal{O}_k^4 \rangle$ of *k*-th lowest dimension half-BPS operators in CFT₆ in large *N* expansion.

•
$$U \equiv \frac{x_{12}^2 x_{24}^2}{x_{13}^2 x_{24}^2}, V \equiv \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 are conformal cross ratios.

- G_k dual to correlator of *k*-th lowest KK modes of M-theory on $AdS_7 \times S^4$.
- Flat space limit of \mathcal{G}_k gives 11d S-matrix $\mathcal{A}|_{7d}$ with momenta restricted to 7d.

- We use Mellin transform $\mathcal{G}_k(U, V) \to M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For *N* large, let $M_k^{\text{tree}}(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u)$, where *p* is degree in $s, t, u \to \infty$, and $M_k^{(p)}$ fixed in terms of CFT₆ data by:
 - Crossing symmetry.
 - 2 Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
 - Poles in *s*, *t*, *u* correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- We use Mellin transform $\mathcal{G}_k(U, V) \to M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For *N* large, let $M_k^{\text{tree}}(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u)$, where *p* is degree in *s*, *t*, *u* $\rightarrow \infty$, and $M_k^{(p)}$ fixed in terms of CFT₆ data by:
 - Crossing symmetry.
 - 2 Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
 - Poles in *s*, *t*, *u* correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- We use Mellin transform $\mathcal{G}_k(U, V) \to M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For *N* large, let $M_k^{\text{tree}}(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u)$, where *p* is degree in $s, t, u \to \infty$, and $M_k^{(p)}$ fixed in terms of CFT₆ data by:

Crossing symmetry.

- 2 Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
- Poles in *s*, *t*, *u* correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- We use Mellin transform $\mathcal{G}_k(U, V) \to M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For *N* large, let $M_k^{\text{tree}}(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u)$, where *p* is degree in $s, t, u \to \infty$, and $M_k^{(p)}$ fixed in terms of CFT₆ data by:
 - Crossing symmetry.
 - 2 Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
 - Poles in *s*, *t*, *u* correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- We use Mellin transform $\mathcal{G}_k(U, V) \to M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For *N* large, let $M_k^{\text{tree}}(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u)$, where *p* is degree in *s*, *t*, *u* $\rightarrow \infty$, and $M_k^{(p)}$ fixed in terms of CFT₆ data by:
 - Crossing symmetry.
 - 2 Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
 - Solution Poles in *s*, *t*, *u* correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.

- We use Mellin transform $\mathcal{G}_k(U, V) \to M_k(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For *N* large, let $M_k^{\text{tree}}(s, t, u) \equiv \sum_{p=1}^{\infty} M_k^{(p)}(s, t, u)$, where *p* is degree in *s*, *t*, *u* $\rightarrow \infty$, and $M_k^{(p)}$ fixed in terms of CFT₆ data by:
 - Crossing symmetry.
 - 2 Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
 - Solution Poles in *s*, *t*, *u* correspond to dimensions of operators in $\mathcal{O}_k \times \mathcal{O}_k$, for tree level only allow poles for half-BPS operators.
- Flat space limit of $M_k^{(p)}(s, t, u)$ gives 2*p* derivative contribution to $\mathcal{A}|_{7d}(s, t, u)$ [Penedones], e.g. $M_k^{(1)} \to \mathcal{A}_R|_{7d}$.

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_{\tau}} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow \mathcal{A}_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.
- No $M_k^{(p)}$ for p=2,3 \Rightarrow no $\mathcal{A}_{R^2}|_{7d}$ or $\mathcal{A}_{R^3}|_{7d}$ [SMC, Perimutter] .
- $M_k^{(p)}$ for $4 \le p < 10$, which gives $\mathcal{A}_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT₆ OPE coefficients [SMC, Perlmutter].
 - *M*^(p) for p ≥ 10 has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_{\tau}} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow \mathcal{A}_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.
- No $M_k^{(p)}$ for p=2,3 \Rightarrow no $\mathcal{A}_{R^2}|_{7d}$ or $\mathcal{A}_{R^3}|_{7d}$ [SMC, Perlmutter].
- $M_k^{(p)}$ for $4 \le p < 10$, which gives $\mathcal{A}_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT₆ OPE coefficients [SMC, Perlmutter].
 - *M*^(p) for p ≥ 10 has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_{\tau}} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow \mathcal{A}_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.
- No $M_k^{(p)}$ for p=2,3 \Rightarrow no $\mathcal{A}_{R^2}|_{7d}$ or $\mathcal{A}_{R^3}|_{7d}$ [SMC, Perlmutter] .
- $M_k^{(p)}$ for $4 \le p < 10$, which gives $\mathcal{A}_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT₆ OPE coefficients [SMC, Perlmutter].
 - *M*^(p) for p ≥ 10 has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_7} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow \mathcal{A}_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.
- No $M_k^{(p)}$ for p=2,3 \Rightarrow no $\mathcal{A}_{R^2}|_{7d}$ or $\mathcal{A}_{R^3}|_{7d}$ [SMC, Perlmutter] .
- $M_k^{(p)}$ for $4 \le p < 10$, which gives $\mathcal{A}_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT₆ OPE coefficients [SMC, Perlmutter].
 - *M*^(p)_k for p ≥ 10 has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_7} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow \mathcal{A}_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.
- No $M_k^{(p)}$ for p=2,3 \Rightarrow no $\mathcal{A}_{R^2}|_{7d}$ or $\mathcal{A}_{R^3}|_{7d}$ [SMC, Perlmutter] .
- $M_k^{(p)}$ for $4 \le p < 10$, which gives $\mathcal{A}_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT₆ OPE coefficients [SMC, Perlmutter].
 - *M*^(p)_k for p ≥ 10 has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

- $M_k^{(1)}$ fixed by central charge $\frac{1}{c_{\tau}} \approx N^{-3}$ [Rastelli, Zhou] $\Rightarrow \mathcal{A}_R|_{7d}$ is proportional to gravitational coupling $\kappa^2 \approx N^{-3}$ as expected.
- No $M_k^{(p)}$ for p=2,3 \Rightarrow no $\mathcal{A}_{R^2}|_{7d}$ or $\mathcal{A}_{R^3}|_{7d}$ [SMC, Perlmutter] .
- $M_k^{(p)}$ for $4 \le p < 10$, which gives $\mathcal{A}_{D^{2p-8}R^4}|_{7d}$ in flat space limit, fixed by small set of CFT₆ OPE coefficients [SMC, Perlmutter].
 - *M*^(p)_k for p ≥ 10 has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_k^{(4)}$ fixed by half-BPS OPE coefficient λ_{BPS}^2 [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

Conclusion

Results:

- Tree level D^{2m}R⁴ contributions to 11d M-theory S-matrix for m < 6 in terms of CFT₆ data.
- Known half-BPS CFT₆ data precisely reproduces R^4 contribution.

Future Directions:

- Derive loop Mellin amplitudes \Rightarrow loop 11d S-matrix terms.
- 6d numerical bootstrap [Beem, Lemos, Rastelli, van Rees] to fix CFT₆ data
 ⇒ 11d S-matrix coefficients.
- Apply method to AdS_{d+1}/CFT_d for other *d*.
 - See Silviu Pufu's talk tomorrow for d = 3 case [SCM, Pufu, Yin].
- See my poster for more details!