M-theory S-Matrix from 6d CFT

Shai M. Chester
Princeton University

Based on arXiv:1805.00892 with E. Perlmutter

M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum $\left(\ell_{11} \ll 1\right)$ expansion:

- Protected terms from type IIA string theory + duality $\mathcal{A}_{R^{4}}=\mathcal{A}_{R} \frac{s t u}{3.2^{7}}$
- Goal. Find all tree level terms $\mathcal{A}_{D^{2 m} R^{4}}$ for $m>3$ using AdS/CFT.

M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum $\left(\ell_{11} \ll 1\right)$ expansion:

- Protected terms from type IIA string theory + duality $\mathcal{A}_{R^{4}}=\mathcal{A}_{R} \frac{s t u}{3.2^{7}}$
- Goal: Find all tree level terms $\mathcal{A}_{D^{2 m} R^{4}}$ for $m>3$ using $\operatorname{AdS} / C F T$.

M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum $\left(\ell_{11} \ll 1\right)$ expansion:

- Protected terms from type IIA string theory + duality [Green,Tseytin]:
$\mathcal{A}_{R^{4}}=\mathcal{A}_{R} \frac{s t u}{3 \cdot 2^{7}}, \quad \mathcal{A}_{D^{2} R^{4}}=\mathcal{A}_{D^{4} R^{4}}=0, \quad \mathcal{A}_{D^{6} R^{4}}=\mathcal{A}_{R} \frac{(s t u)^{2}}{15 \cdot 2^{25}}$.
- Goal: Find all tree level terms $\mathcal{A}_{D^{2 m} R^{4}}$ for $m>3$ using AdS/CFT.

M-theory S-Matrix

- M-theory is a quantum theory of interacting supergravitons in 11d with no dimensionless coupling.
- Graviton S-matrix in small momentum $\left(\ell_{11} \ll 1\right)$ expansion:

- Protected terms from type IIA string theory + duality [Green,Tseytin]:

$$
\mathcal{A}_{R^{4}}=\mathcal{A}_{R} \frac{s t u}{3 \cdot 2^{7}}, \quad \mathcal{A}_{D^{2} R^{4}}=\mathcal{A}_{D^{4} R^{4}}=0, \quad \mathcal{A}_{D^{6} R^{4}}=\mathcal{A}_{R} \frac{(s t u)^{2}}{15 \cdot 2^{15}} .
$$

- Goal: Find all tree level terms $\mathcal{A}_{D^{2 m} R^{4}}$ for $m>3$ using AdS/CFT.

AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study $(2,0) A_{N-1}$ 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $A d S_{7} \times S^{4}$.
- We compute: $\mathcal{G}_{k}(U, V)=x_{12}^{2 k} x_{34}^{2 k}\left\langle\mathcal{O}_{k}^{1} \mathcal{O}_{k}^{2} \mathcal{O}_{k}^{3} \mathcal{O}_{k}^{4}\right\rangle$ of k-th lowest dimension half-BPS operators in CFT_{6} in large N expansion.
- $U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$ are conformal cross ratios.
- \mathcal{G}_{k} dual to correlator of k-th lowest KK modes of M-theory on $\mathrm{AdS}_{7} \times \mathrm{S}^{4}$.
- Flat space limit of \mathcal{G}_{k} gives 11 d S-matrix $\mathcal{A}_{\left.\right|_{7 d}}$ with momenta restricted to 7d.

AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study $(2,0) A_{N-1} 6 d$ SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $A d S_{7} \times S^{4}$.

- $U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$ are conformal cross ratios.
- G. dual to correlator of K-th lowest $K K$ modes of M-theory on $A d S_{7} \times S^{4}$.
- Flat space limit of \mathcal{G}_{k} gives 11d S-matrix $\left.\mathcal{A}\right|_{7 d}$ with momenta restricted to 7d.

AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study $(2,0) A_{N-1} 6 d$ SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $A d S_{7} \times S^{4}$.
- We compute: $\mathcal{G}_{k}(U, V)=x_{12}^{2 k} x_{34}^{2 k}\left\langle\mathcal{O}_{k}^{1} \mathcal{O}_{k}^{2} \mathcal{O}_{k}^{3} \mathcal{O}_{k}^{4}\right\rangle$ of k-th lowest dimension half-BPS operators in CFT_{6} in large N expansion.
- $U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{14}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$ are conformal cross ratios.
- \mathcal{G}_{k} dual to correlator of k-th lowest KK modes of M-theory on
- Flat space limit of \mathcal{G}_{k} gives $11 d$ S-matrix $\mathcal{A}_{7 d}$ with momenta restricted to 7d.

AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study $(2,0) A_{N-1} 6 d$ SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $A d S_{7} \times S^{4}$.
- We compute: $\mathcal{G}_{k}(U, V)=x_{12}^{2 k} x_{34}^{2 k}\left\langle\mathcal{O}_{k}^{1} \mathcal{O}_{k}^{2} \mathcal{O}_{k}^{3} \mathcal{O}_{k}^{4}\right\rangle$ of k-th lowest dimension half-BPS operators in CFT_{6} in large N expansion.
- $U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{\frac{x}{15}_{2}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$ are conformal cross ratios.
- \mathcal{G}_{k} dual to correlator of k-th lowest KK modes of M-theory on $A d S_{7} \times S^{4}$.
- Flat snace limit of \mathcal{G}_{k} gives 11 d S-matrix $\mathcal{A}_{7 d}$ with momenta restricted to 7d.

AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study $(2,0) A_{N-1}$ 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $A d S_{7} \times S^{4}$.
- We compute: $\mathcal{G}_{k}(U, V)=x_{12}^{2 k} x_{34}^{2 k}\left\langle\mathcal{O}_{k}^{1} \mathcal{O}_{k}^{2} \mathcal{O}_{k}^{3} \mathcal{O}_{k}^{4}\right\rangle$ of k-th lowest dimension half-BPS operators in CFT_{6} in large N expansion.
- $U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$ are conformal cross ratios.
- \mathcal{G}_{k} dual to correlator of k-th lowest KK modes of M-theory on $A d S_{7} \times S^{4}$.
- Flat space limit of \mathcal{G}_{k} gives 11 d S-matrix $\mathcal{A}_{\mid 7 d}$ with momenta restricted to 7d.

AdS/CFT for M-theory

- M-theory contains two non-perturbative dynamical objects: M2 branes and M5 branes.
- We study $(2,0) A_{N-1}$ 6d SCFT that describes stack of N M5 branes, and is dual at large N to M-theory on $A d S_{7} \times S^{4}$.
- We compute: $\mathcal{G}_{k}(U, V)=x_{12}^{2 k} x_{34}^{2 k}\left\langle\mathcal{O}_{k}^{1} \mathcal{O}_{k}^{2} \mathcal{O}_{k}^{3} \mathcal{O}_{k}^{4}\right\rangle$ of k-th lowest dimension half-BPS operators in CFT_{6} in large N expansion.
- $U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$ are conformal cross ratios.
- \mathcal{G}_{k} dual to correlator of k-th lowest KK modes of M-theory on $A d S_{7} \times S^{4}$.
- Flat space limit of \mathcal{G}_{k} gives 11 d S-matrix $\left.\mathcal{A}\right|_{7 d}$ with momenta restricted to 7d.

Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $\mathcal{G}_{k}(U, V) \rightarrow M_{k}(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For N large, let $M_{k}^{\text {tree }}(s, t, u) \equiv \sum_{p=1}^{\infty} M_{k}^{(p)}(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M_{k}^{(p)}$ fixed in terms of CFT_{6} data by:
- Crossing symmetry.
(2) Superconformal Ward identities
(3) Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_{k} \times \mathcal{O}_{k}$, for tree level only allow poles for half-BPS operators.
- Flat space limit of $M_{k}^{(p)}(s, t, u)$ gives $2 p$ derivative contribution to $\left.\mathcal{A}\right|_{7 d}(s, t, u)$
e.g. $\left.M_{k}^{(1)} \rightarrow \mathcal{A}_{R}\right|_{7 d}$.

Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $\mathcal{G}_{k}(U, V) \rightarrow M_{k}(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For N large, let $M_{k}^{\text {tree }}(s, t, u) \equiv \sum_{p=1}^{\infty} M_{k}^{(p)}(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M_{k}^{(p)}$ fixed in terms of CFT_{6} data by:
(1) Crossing symmetry.
(2) Superconformal Ward identities
(3) Poles in s, t, ψ correspond to dimensions of operators in $\mathcal{O}_{k} \times \mathcal{O}_{k}$, for tree level only allow poles for half-BPS operators.

Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $\mathcal{G}_{k}(U, V) \rightarrow M_{k}(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For N large, let $M_{k}^{\text {tree }}(s, t, u) \equiv \sum_{p=1}^{\infty} M_{k}^{(p)}(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M_{k}^{(p)}$ fixed in terms of CFT_{6} data by:
(1) Crossing symmetry.
(2) Superconformal Ward identities
(3) Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_{k} \times \mathcal{O}_{k}$, for tree level only allow poles for half-BPS operators.
- Flat space limit of $M_{k}^{(p)}(s, t, u)$ gives $2 p$ derivative contribution to $\left.\mathcal{A}\right|_{7 d}(s, t, u)$

Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $\mathcal{G}_{k}(U, V) \rightarrow M_{k}(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For N large, let $M_{k}^{\text {tree }}(s, t, u) \equiv \sum_{p=1}^{\infty} M_{k}^{(p)}(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M_{k}^{(p)}$ fixed in terms of CFT_{6} data by:
(1) Crossing symmetry.
(2) Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
(3) Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_{k} \times \mathcal{O}_{k}$, for tree level only allow poles for half-BPS operators.

Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $\mathcal{G}_{k}(U, V) \rightarrow M_{k}(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For N large, let $M_{k}^{\text {tree }}(s, t, u) \equiv \sum_{p=1}^{\infty} M_{k}^{(p)}(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M_{k}^{(p)}$ fixed in terms of CFT_{6} data by:
(1) Crossing symmetry.
(2) Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou] .
(3) Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_{k} \times \mathcal{O}_{k}$, for tree level only allow poles for half-BPS operators.

Tree Level Half-BPS Four Point functions: Constraints

- We use Mellin transform $\mathcal{G}_{k}(U, V) \rightarrow M_{k}(s, t, u)$ [Mack, Penedones], where s, t, u are like Mandelstam variables in Mellin space.
- For N large, let $M_{k}^{\text {tree }}(s, t, u) \equiv \sum_{p=1}^{\infty} M_{k}^{(p)}(s, t, u)$, where p is degree in $s, t, u \rightarrow \infty$, and $M_{k}^{(p)}$ fixed in terms of CFT_{6} data by:
(1) Crossing symmetry.
(2) Superconformal Ward identities [Dolan, Gallot, Sokatchev; Rastelli, Zhou].
(3) Poles in s, t, u correspond to dimensions of operators in $\mathcal{O}_{k} \times \mathcal{O}_{k}$, for tree level only allow poles for half-BPS operators.
- Flat space limit of $M_{k}^{(p)}(s, t, u)$ gives $2 p$ derivative contribution to $\left.\mathcal{A}\right|_{7 d}(s, t, u)$ [Penedones] , e.g. $\left.M_{k}^{(1)} \rightarrow \mathcal{A}_{R}\right|_{7 d}$.

Tree Level Half-BPS Four Point functions: Solutions

- $M_{k}^{(1)}$ fixed by central charge $\frac{1}{C_{T}} \approx N^{-3}$ [Rastelli, Zhou] $\left.\Rightarrow \mathcal{A}_{R}\right|_{7 d}$ is proportional to gravitational coupling $\kappa^{2} \approx N^{-3}$ as expected.
- $\operatorname{No} M_{k}^{(p)}$ for $p=2,3 \Rightarrow$ no $\mathcal{A}_{R^{2}} \mid 7 d$ or $\mathcal{A}_{R^{3} \mid 7 d}$
- $M_{k}^{(p)}$ for $4 \leq p<10$, which gives $\mathcal{A}_{D^{2 p-8} R^{4} \mid 7 d}$ in flat space limit, fixed by small set of CFT_{6} OPE coefficients
- $M_{k}^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_{k}^{(4)}$ fixed by half-BPS OPE coefficient $\lambda_{B P S}^{2}$
can be computed exactly
- Flat space limit of $M_{k}^{(4)}$ correctly reproduces the known $\mathcal{A}_{R^{4} \mid 7 d}$!

Tree Level Half-BPS Four Point functions: Solutions

- $M_{k}^{(1)}$ fixed by central charge $\frac{1}{C_{T}} \approx N^{-3}$ [Rastelli, Zhou] $\left.\Rightarrow \mathcal{A}_{R}\right|_{7 d}$ is proportional to gravitational coupling $\kappa^{2} \approx N^{-3}$ as expected.
- No $M_{k}^{(p)}$ for $p=2,3 \Rightarrow$ no $\left.\mathcal{A}_{R^{2}}\right|_{7 d}$ or $\left.\mathcal{A}_{R^{3}}\right|_{7 d}[S M C$, Perlmutter] .
$M_{k}^{(p)}$ for $4 \leq p<10$, which gives $\mathcal{A}_{D^{2 p-8} R^{4} \mid 7 d}$ in flat space limit,
fixed by small set of CFT_{6} OPE coefficients
- $M_{R}^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
$M_{k}^{(4)}$ fixed by half-BPS OPE coefficient $\lambda_{\text {BPS }}^{2}$
can be computed exactly
- Flat space limit of $M_{k}^{(4)}$ correctly reproduces the known $\left.\mathcal{A}_{R^{4}}\right|_{7 d}$!

Tree Level Half-BPS Four Point functions: Solutions

- $M_{k}^{(1)}$ fixed by central charge $\frac{1}{C_{T}} \approx N^{-3}$ [Rastelli, Zhou] $\left.\Rightarrow \mathcal{A}_{R}\right|_{7 d}$ is proportional to gravitational coupling $\kappa^{2} \approx N^{-3}$ as expected.
- No $M_{k}^{(p)}$ for $p=2,3 \Rightarrow$ no $\left.\mathcal{A}_{R^{2}}\right|_{7 d}$ or $\left.\mathcal{A}_{R^{3}}\right|_{7 d}[S M C$, Perlmutter] .
- $M_{k}^{(p)}$ for $4 \leq p<10$, which gives $\mathcal{A}_{\left.D^{2 p-8} R^{4}\right|_{7 d}}$ in flat space limit, fixed by small set of CFT_{6} OPE coefficients [SMC, Perlmutter].
- $M_{k}^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
$M_{k}^{(4)}$ fixed by half-BPS OPE coefficient $\lambda_{\text {BPS }}^{2}$
can be computed exactly
\square

Tree Level Half-BPS Four Point functions: Solutions

- $M_{k}^{(1)}$ fixed by central charge $\frac{1}{C_{T}} \approx N^{-3}$ [Rastelli, Zhou] $\left.\Rightarrow \mathcal{A}_{R}\right|_{7 d}$ is proportional to gravitational coupling $\kappa^{2} \approx N^{-3}$ as expected.
- No $M_{k}^{(p)}$ for $p=2,3 \Rightarrow$ no $\left.\mathcal{A}_{R^{2}}\right|_{7 d}$ or $\left.\mathcal{A}_{R^{3}}\right|_{7 d}[S M C$, Perlmutter] .
- $M_{k}^{(p)}$ for $4 \leq p<10$, which gives $\left.\mathcal{A}_{D^{2 p-8} R^{4}}\right|_{7 d}$ in flat space limit, fixed by small set of CFT_{6} OPE coefficients [SMC, Perlmutter].
- $M_{k}^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.

Tree Level Half-BPS Four Point functions: Solutions

- $M_{k}^{(1)}$ fixed by central charge $\frac{1}{C_{T}} \approx N^{-3}$ [Rastelli, Zhou] $\left.\Rightarrow \mathcal{A}_{R}\right|_{7 d}$ is proportional to gravitational coupling $\kappa^{2} \approx N^{-3}$ as expected.
- No $M_{k}^{(p)}$ for $p=2,3 \Rightarrow$ no $\left.\mathcal{A}_{R^{2}}\right|_{7 d}$ or $\left.\mathcal{A}_{R^{3}}\right|_{7 d}$ [SMC, Perlmutter].
- $M_{k}^{(p)}$ for $4 \leq p<10$, which gives $\mathcal{A}_{\left.D^{2 p-8} R^{4}\right|_{7 d}}$ in flat space limit, fixed by small set of CFT_{6} OPE coefficients [SMc, Perlmutter].
- $M_{k}^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_{k}^{(4)}$ fixed by half-BPS OPE coefficient $\lambda_{\text {BPS }}^{2}$ [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].

Tree Level Half-BPS Four Point functions: Solutions

- $M_{k}^{(1)}$ fixed by central charge $\frac{1}{c_{T}} \approx N^{-3}$ [Rastelli, Zhou] $\left.\Rightarrow \mathcal{A}_{R}\right|_{7 d}$ is proportional to gravitational coupling $\kappa^{2} \approx N^{-3}$ as expected.
- No $M_{k}^{(p)}$ for $p=2,3 \Rightarrow$ no $\left.\mathcal{A}_{R^{2}}\right|_{7 d}$ or $\left.\mathcal{A}_{R^{3}}\right|_{7 d}$ [SMC, Perlmutter].
- $M_{k}^{(p)}$ for $4 \leq p<10$, which gives $\left.\mathcal{A}_{D^{2 p-8} R^{4}}\right|_{7 d}$ in flat space limit, fixed by small set of CFT_{6} OPE coefficients [SMc, Perlmutter].
- $M_{k}^{(p)}$ for $p \geq 10$ has same N scaling as loop terms, so require loop Mellin amplitudes to fix unambiguously.
- $M_{k}^{(4)}$ fixed by half-BPS OPE coefficient $\lambda_{\text {BPS }}^{2}$ [SMC, Perlmutter] that can be computed exactly [Beem, Rastelli, van Rees].
- Flat space limit of $M_{k}^{(4)}$ correctly reproduces the known $\mathcal{A}_{R^{4} \mid 7 d}$!

Conclusion

Results:

- Tree level $D^{2 m} R^{4}$ contributions to 11d M-theory S-matrix for $m<6$ in terms of CFT_{6} data.
- Known half-BPS CFT_{6} data precisely reproduces R^{4} contribution.

Future Directions:

- Derive loop Mellin amplitudes \Rightarrow loop 11d S-matrix terms.
- 6d numerical bootstrap [Beem, Lemos, Rastelli, van Rees] to fix CFT_{6} data \Rightarrow 11d S-matrix coefficients.
- Apply method to $\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$ for other d.
- See Silviu Pufu's talk tomorrow for $d=3$ case [SCM, Pufu, Yin].

See my poster for more details!

