

Global Anomalies In Six-Dimensional Supergravity Gregory Moore Rutgers University

Work with DANIEL PARK & SAMUEL MONNIER

Work in progress with SAMUEL MONNIER

Strings 2018, Okinawa June 29, 2018

- 2 Six-dimensional Sugra & Green-Schwarz Mech.
- 3 Quantization Of Anomaly Coefficients.
- Geometrical Anomaly Cancellation, η-Invariants
 & Wu-Chern-Simons
- 5
- **Technical Tools & Future Directions**
- 6 F-Theory Check
 - Concluding Remarks

Motivation

Relation of apparently consistent theories of quantum gravity to string theory.

From W. Taylor's TASI lectures:

State of art summarized in Brennan, Carta, and Vafa 1711.00864

Brief Summary Of Results Focus on 6d sugra (More) systematic study of global anomalies **Result 1: NECESSARY CONDITION:** unifies & extends all previous conditions **Result 2: NECESSARY & SUFFICIENT:** A certain 7D TQFT Z_{TOP} must be trivial. But effective computation of Z_{TOP} in

the general case remains open.

Result 3: Check in F-theory: (Requires knowing the global form of the identity component of the gauge group.)

- 3 Quantization Of Anomaly Coefficients.
- Geometrical Anomaly Cancellation, η-Invariants
 & Wu-Chern-Simons
- 5
 - **Technical Tools & Future Directions**
 - 6 F-Theory Check
 - 7 Concluding Remarks

(Pre-) Data For 6d Supergravity

(1,0) sugra multiplet + vector multiplets +
hypermultiplets + tensor multiplets

VM: Choose a (possibly disconnected) compact Lie group G.

HM: Choose a quaternionic representation \mathcal{R} of G

TM: Choose an integral lattice Λ of signature (1,T)

Pre-data: $(G, \mathcal{R}, \Lambda)$

6d Sugra - 2

Can write multiplets, Lagrangian, equations of motion. [Riccioni, 2001]

- Fermions are chiral (symplectic Majorana-Weyl)
 - 2-form fieldstrengths are (anti-)self dual

Multiplet	Field Content
Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
Tensor	$(B^{\mu\nu}, \chi^-, \phi)$
Vector	(A_{μ}, λ^+)
Hyper	$(\psi^-, 4\varphi)$
Half-hyper	$(\psi_{\mathbb{R}}^{-}, 2\varphi)$

The Anomaly Polynomial Chiral fermions & (anti-)self-dual tensor fields \Rightarrow gauge & gravitational anomalies. From (G, \mathcal{R}, Λ) we compute, following textbook procedures,

 $I_8 \sim (\dim_{\mathbb{H}}(\mathcal{R}) - \dim(G) + 29T - 273)Tr(R^4) + \cdots$

 $+ (9 - T)(Tr R^2)^2 + (F^4 - type) + \cdots$

6d Green-Schwarz mechanism requires $I_8 = \frac{1}{2}Y^2 \quad Y \in \Omega^4(\mathcal{W}; \Lambda \otimes \mathbb{R})$

Standard Anomaly Cancellation

Interpret *Y* as background magnetic current for the tensor-multiplets \Rightarrow

dH = Y

 $\Rightarrow B$ transforms under diff & VM gauge transformations...

Add counterterm to sugra action

$$e^{iS} \rightarrow e^{iS} e^{-2\pi i \frac{1}{2} \int BY}$$

So, What's The Big Deal?

Definition Of Anomaly Coefficients Let's try to factorize: $I_8 = \frac{1}{2}Y^2 \qquad Y \in \Omega^4(\mathcal{W}; \Lambda \otimes \mathbb{R})$ $\mathfrak{g} = \mathfrak{g}_{ss} \oplus \mathfrak{g}_{Abel} \cong \bigoplus_i \mathfrak{g}_i \oplus_I \mathfrak{u}(1)_I$ General form of *Y*: $Y = \frac{a}{4}p_1 - \sum_i b_i c_2^i + \frac{1}{2}\sum_i b_{IJ} c_1^I c_1^J$

 $p_1 \coloneqq \frac{1}{8\pi^2} Tr_{vec} R^2$

Anomaly coefficients:

 $c_2^i \coloneqq \frac{1}{16\pi^2 h_i^{\vee}} Tr_{adj} F_i^2$

 $a,b_i,b_{IJ}\in\Lambda\otimes\mathbb{R}$

The Data Of 6d Sugra

The very <u>existence</u> of a factorization $I_8 = \frac{1}{2}Y^2$ puts constraints on $(G, \mathcal{R}, \Lambda)$. These have been well-explored. For example....

 $\dim_{\mathbb{H}} \mathcal{R} - \dim G + 29 T - 273 = 0$ $a^2 = 9 - T, \dots$

Also: There are multiple choices of anomaly coefficients (a, b_i, b_{IJ}) factoring the same I_8

Full data for 6d sugra:

 $(G, \mathcal{R}, \Lambda)$ AND $a, b_i, b_{IJ} \in \Lambda \otimes \mathbb{R}$

Standard Anomaly Cancellation -2/2

For any $(G, \mathcal{R}, \Lambda, a, b)$ adding the GS term cancels all perturbative anomalies.

All is sweetness and light.

There are solutions of the factorizations conditions that cannot be realized in F-theory!

Global anomalies?

Does the GS counterterm even make mathematical sense ?

2 Six-dimensional Sugra & Green-Schwarz Mech.

3 Quantization Of Anomaly Coefficients.

- Geometrical Anomaly Cancellation, η-Invariants
 & Wu-Chern-Simons
- 5
- **Technical Tools & Future Directions**
- 6 F-Theory Check
 - Concluding Remarks

The New Constraints

- Global anomalies have been considered before. We have just been a little more systematic.
- To state the best result we note that $b = (b_i, b_{IJ})$ determines a $\Lambda \otimes \mathbb{R}$ –valued quadratic form on g:
- Vector space Q of such quadratic forms arises in topology: $Q \cong H^4(BG_1; \Lambda \otimes \mathbb{R})$ $H^4(BG_1; \Lambda) \subset Q$

A Derivation

A consistent sugra can be put on an arbitrary spin 6-fold with arbitrary gauge bundle.

Cancellation of background string charge in compact Euclidean spacetime $\Rightarrow \forall \Sigma \in H_4(\mathcal{M}_6; \mathbb{Z})$

 $\int_{\Sigma} Y \in \Lambda$ Because the background string charge must be cancelled by strings.

This is a <u>NECESSARY</u> but not (in general) <u>SUFFICIENT</u> condition for cancellation of all global anomalies...

6d Green-Schwarz Mechanism Revisited

Goal: Understand Green-Schwarz anomaly cancellation in precise mathematical terms.

Benefit: We recover the constraints:

$$\frac{1}{2}b \in H^4(BG_1;\Lambda) \quad a \in \Lambda \qquad \Lambda^{\vee} \cong \Lambda$$

and derive a new constraint: *a* is a *characteristic vector*:

 $\forall v \in \Lambda \quad v \cdot v = v \cdot a \mod 2$

What's Wrong With Textbook Green-Schwarz Anomaly Cancellation?

What does *B* even mean when \mathcal{M}_6 has nontrivial topology? (*H* is not closed!)

How are the periods of *dB* quantized?

Does the GS term even make sense?

$$\frac{1}{2}\int_{\mathcal{M}_6} B Y = \frac{1}{2}\int_{\mathcal{U}_7} dB Y$$

must be independent of extension to \mathcal{U}_7 !

But it isn't

Even for the difference of two B-fields,

$$d(H_1-H_2)=0$$

we can quantize $[H_1 - H_2] \in H^3(\mathcal{U}_7; \Lambda)$

$$\exp(2\pi i \frac{1}{2} \int_{\mathcal{U}_7} (H_1 - H_2)Y)$$

is not well-defined because of the factor of $\frac{1}{2}$.

- 2 Six-dimensional Sugra & Green-Schwarz Mech.
- 3 Quantization Of Anomaly Coefficients.
- 4 Geometrical Anomaly Cancellation, η-Invariants & Wu-Chern-Simons
- 5
- **Technical Tools & Future Directions**
- 6 F-Theory Check
 - Concluding Remarks

Geometrical Formulation Of Anomalies Space of all fields in 6d sugra is fibered over nonanomalous fields: $\mathcal{B} = Met(\mathcal{M}_{6}) \times Conn(\mathcal{P}) \times \{Scalar \ fields\}$ Partition $\int_{\frac{B}{G}} \int_{Fermi+B} e^{S_0+S_{Fermi+B}}$ $\Psi_{Anomaly}(A, g_{\mu\nu}, \phi) \coloneqq \int_{Fermi+B} e^{S_{Fermi+B}}$ is a section of a line bundle over \mathcal{B}/\mathcal{G} You cannot integrate a section of a line bundle over \mathcal{B}/\mathcal{G} unless it is trivialized.

Approach Via Invertible Field Theory

Definition [Freed & Moore]: An invertible field theory Z has

Partition function $\in \mathbb{C}^*$

One-dimensional Hilbert spaces of states ...

satisfying natural gluing rules.

Freed: Geometrical interpretation of anomalies in ddimensions = Invertible field theory in (d+1) dimensions

Invertible Anomaly Field Theory

Interpret anomaly as a 7D invertible field theory $Z_{Anomaly}$ constructed from $G, \mathcal{R}, \Lambda, \mathcal{B}$

Data for the field theory: *G*-bundles \mathcal{P} with gauge connection, Riemannian metric, spin structure \mathfrak{s} . (it is NOT a TQFT!)

Varying metric and gauge connection \Rightarrow

 $Z_{Anomaly}(\mathcal{M}_6)$ is a LINE BUNDLE

 $\Psi_{Anomaly}$ is a SECTION of $Z_{Anomaly}(\mathcal{M}_6)$

Anomaly Cancellation In Terms of Invertible Field Theory

1. Construct a ``counterterm" 7D invertible field theory Z_{CT}

 $Z_{CT}(\mathcal{M}_6) \cong Z_{Anomaly}(\mathcal{M}_6)^*$

2. Using just the data of the <u>local</u> fields in <u>six</u> dimensions, we construct a section:

$$\Psi_{CT} \in Z_{CT}(\mathcal{M}_{6})$$
Then:
$$\int_{Fermi+B} e^{S_{Fermi+B}} \Psi_{CT}$$

is canonically a <u>function</u> on \mathcal{B}/\mathcal{G}

Dai-Freed Field Theory

D: Dirac operator in ODD dimensions. $\xi(D) \coloneqq \frac{\eta(D) + \dim \ker(D)}{2}$

 $e^{2\pi i\xi(D)}$ defines an invertible field theory [Dai & Freed, 1994]

If $\partial \mathcal{U} = \emptyset$ $Z_{DaiFreed}(\mathcal{U}) = e^{2\pi i \xi(D)}$

If $\partial \mathcal{U} = \mathcal{M} \neq \emptyset$ then $e^{2\pi i \,\xi(D)}$ is a **section of a line bundle** over the space of boundary data. Suitable gluing properties hold. Anomaly Field Theory For 6d Sugra On 7-manifolds \mathcal{U}_7 with $\partial \mathcal{U}_7 = \emptyset$

 $Z_{Anomaly}(\mathcal{U}_{7}) = \exp[2\pi i \left(\xi(D_{Fermi}) + \xi(D_{B-field})\right)]$

On 7-manifolds with $\partial U_7 = \mathcal{M}_6$:

The sum of ξ –invariants defines a unit vector $\widehat{\Psi}_{Anomaly}$ in a line $Z_{Anomaly}(\mathcal{M}_6)$

Simpler Expression When $(\mathcal{U}_7, \mathcal{P})$ Extends To Eight Dimensions

In general it is impossible to compute η -invariants in simpler terms.

But if the matter content is such that $I_8 = \frac{1}{2}Y^2$

AND if $(\mathcal{U}_7, \mathcal{P})$ is bordant to zero:

$$Z_{Anomaly}(\mathcal{U}_7) = \exp(2\pi i \left(\frac{1}{2} \int_{\mathcal{W}_8} Y^2 - \frac{sign(\Lambda)\sigma(\mathcal{W}_8)}{8}\right))$$

When can you extend \mathcal{U}_7 and its gauge bundle \mathcal{P} to a spin 8-fold \mathcal{W}_8 ??

Spin Bordism Theory $\Omega_7^{spin} = 0$: Can always extend spin \mathcal{U}_7 to spin \mathcal{W}_8

 $\Omega_7^{spin}(BG)$: Can be nonzero: There can be obstructions to extending a *G*-bundle $\mathcal{P} \to \mathcal{U}_7$ to a *G*-bundle $\tilde{\mathcal{P}} \to \mathcal{W}_8$

 $\Omega_7^{spin}(BG) = 0$ for many groups, e.g. products of U(n), SU(n), Sp(n). Also E_8

But for some *G* it is nonzero!

When 7D data extends to \mathcal{W}_8 the formula $Z_{Anomaly}(\mathcal{U}_7) = \exp(2\pi i \left(\frac{1}{2}\int_{\mathcal{W}_2} Y^2 - \frac{sign(\Lambda)\sigma(\mathcal{W}_8)}{8}\right))$ \Rightarrow clue to constructing Z_{CT} : $Z_{\text{Anomaly}}(\mathcal{U}_7) = \exp(2\pi i \int_{\mathcal{W}_8} \frac{1}{2} X(X + \lambda'))$ $X = Y - \frac{1}{2}\lambda' \quad \lambda' = a \otimes \lambda \quad \lambda \coloneqq \frac{1}{2}p_1$

Thanks to our quantization condition on b, $X \in \Omega^4(\mathcal{W}_8; \Lambda)$ has coho class in $H^4(\mathcal{W}_8; \Lambda)$

$$\exp(2\pi i \int_{\mathcal{W}_8} \frac{1}{2} X(X+\lambda'))$$

is independent of extension ONLY if

 $a \in \Lambda$ is a characteristic vector: $\forall v \in \Lambda$ $v^2 = v \cdot a \mod 2$

This is the partition function of a 7D topological field theory known as ``Wu-Chern-Simons theory.''

Wu-Chern-Simons Theory

Generalizes spin-Chern-Simons to p-form gauge fields.

Developed in detail in great generality by Samuel Monnier arXiv:1607.0139

Our case: 7D TFT Z_{WCS} of a (locally defined) 3form gauge potential C with fieldstrength X = dC

$$[X] \in H^4(\cdots;\Lambda)$$

Instead of spin structure we need a ``Wu-structure'': A trivialization ω of:

$$v_4 = w_4 + w_3 w_1 + w_2^2 + w_1^4$$

Wu-Chern-Simons

In our case $v_4 = w_4$ will have a trivialization in 6 and 7 dimensions, but we need to <u>choose</u> one to make sense of $Z_{WCS}(\mathcal{U}_7)$ and $Z_{WCS}(\mathcal{M}_6)$

$$Z_{WCS}(\mathcal{U}_7) = \exp(-2\pi i \int_{\mathcal{W}_8} \frac{1}{2} X(X + \lambda'))$$

$$\lambda' = a \otimes \lambda$$

a must be a characteristic vector of Λ

 $\Lambda^{\vee}\cong\Lambda$

Defining Z_{CT} From Z_{WCS}

To define the counterterm line bundle Z_{CT} we want to evaluate Z_{WCS} on (\mathcal{M}_6, Y) .

Problem 1: *Y* is shifted: $[Y] = \frac{1}{2}a \otimes \lambda + [X]$

$$[X] = \sum b_i c_2^i + \frac{1}{2} \sum b_{IJ} c_1^I c_1^J \in H^4(\dots; \Lambda)$$

Problem 2: Z_{WCS}^{ω} needs a choice of Wu-structure ω .

!! We do not want to add a choice of Wu structure to the defining set of sugra data $(G, \mathcal{R}, \Lambda, a, b)$

Defining Z_{CT} From Z_{WCS}

Solution: Given a Wu-structure ω we can shift *Y* to $X = Y - \frac{1}{2}v(\omega)$, an unshifted field, such that $Z_{WCS}^{\omega}(...;Y - \frac{1}{2}v(\omega))$ is independent of ω

$$Z_{CT}(\cdots;Y) \coloneqq Z_{WCS}^{\omega}\left(\cdots;Y-\frac{1}{2}\nu(\omega)\right)$$

Thus, Z_{CT} is independent of Wu structure ω : So no need to add this extra data to the definition of 6d sugra.

 Z_{CT} transforms properly under B-field, diff, and VM gauge transformations: $Z_{CT}(\mathcal{M}_6) \cong Z_{Anomaly}(\mathcal{M}_6)^*$

Anomaly Cancellation

Z_{TOP} ≔ Z_{Anomaly} × Z_{CT} is a 7D
 <u>topological field theory</u> that is defined bordism classes of *G*-bundles.
 7D partition function is a homomorphism:

 $Z_{Anomaly} \times Z_{CT} : \Omega_7^{spin}(BG) \to U(1)$

If this homomorphism is trivial then $Z_{Anomaly} \times Z_{CT}(\mathcal{M}_6) \cong 1$ is canonically trivial.

Anomaly Cancellation

Suppose the 7D TFT is indeed trivializable

Now need a section, $\Psi_{CT}(\mathcal{M}_6)$ which is local in the <u>six-dimensional</u> fields. This will be our Green-Schwarz counterterm:

 $\int_{Fermi+B} e^{S_{Fermi+B}} \Psi_{CT}(\mathcal{M}_6; A, g_{\mu\nu}, B)$

The integral will be a function on \mathcal{B}/\mathcal{G}

Introduction & Summary Of Results

- 2 Six-dimensional Sugra & Green-Schwarz Mech.
- 3 Quantization Of Anomaly Coefficients.
- Geometrical Anomaly Cancellation, η-Invariants
 & Wu-Chern-Simons

5 Technical Tools & Future Directions

- 6 F-Theory Check
 - Concluding Remarks

Checks & Hats: Differential Cohomology

 $H^k(X) \to \check{H}^k(X)$

Checks & Hats: Differential Cohomology

Precise formalism for working with p-form fields in general spacetimes (and p-form global symmetries)

Three independent pieces of gauge invariant information:Wilson linesFieldstrengthTopological class

Differential cohomology is an infinite-dimensional Abelian group that precisely accounts for these data and nicely summarizes how they fit together.

Exposition for physicists: Freed, Moore & Segal, 2006

Construction Of The Green-Schwarz Counterterm: $\Psi_{CT} = \exp 2\pi i \int_{\mathcal{M}_{c}}^{E,\omega} gst$ $gst = \left(\frac{1}{2} \left| \left(\breve{H} - \frac{1}{2} \breve{\eta} \right) \cup \left(\breve{Y} + \frac{1}{2} \breve{\nu} \right) \right|_{hol}, h_2 - \frac{1}{2} \eta \right)$

Section of the right line bundle & independent of Wu structure ω .

Locally constructed in six dimensions, but makes sense in topologically nontrivial cases.

Locally reduces to the expected answer

Conclusion: All Anomalies Cancel for $(G, \mathcal{R}, \Lambda, a, b)$ such that: $I_8 = \frac{1}{2} Y^2$

 $a \in \Lambda \cong \Lambda^{\vee}$ is characteristic & $a^2 = 9 - T$

(BG)=0

 $\frac{1}{2}b \in H^4(BG_1;\Lambda)$

Except,...

What If The Bordism Group Is Nonzero?

We would like to relax the last condition, but it could happen that

$Z_{Anomaly} \times Z_{CT} : \Omega_7^{spin}(BG) \to U(1)$ defines a nontrivial bordism invariant.

For example, if G = O(N), for suitable representations, the 7D TFT might have partition function $\exp 2\pi i \int_{\mathcal{U}_7} w_1^7$

Then the theory would be anomalous.

Future Directions

Understand how to compute $Z_{TOP} \coloneqq Z_{Anomaly} \times Z_{CT}$

When $\Omega_7^{spin}(BG)$ is nonvanishing there will be new conditions. (Examples exist!!)

Finding these new conditions in complete generality looks like a very challenging problem...

Introduction & Summary Of Results

- 2 Six-dimensional Sugra & Green-Schwarz Mech.
- 3 Quantization Of Anomaly Coefficients.
- Geometrical Anomaly Cancellation, η-Invariants
 & Wu-Chern-Simons
- 5
- **Technical Tools & Future Directions**

6 F-Theory Check

7 Concluding Remarks

And What About F-Theory ?

?

F-Theory: It's O.K.

g is determined from the discriminant locus [Morrison & Vafa 96] In order to check $\frac{1}{2}b \in H^4(BG_1; \Lambda)$ we clearly need to know G_1 .

We found a way F-theory passes to determine G_1 . This test.

We believe a very similar argument also gives the (identity component of) 4D F-theory.

Introduction & Summary Of Results

- 2 Six-dimensional Sugra & Green-Schwarz Mech.
- 3 Quantization Of Anomaly Coefficients.
- Geometrical Anomaly Cancellation, η-Invariants
 & Wu-Chern-Simons
 - 5 Technical Tools & Future Directions
 - 6 F-Theory Check

HUGE THANKS TO THE ORGANIZERS!

Hirosi Ooguri おおぐり ひろし Youhei Morita もりた ようへい Hitoshi Murayama むらやま ひとし Koji Hashimoto はしもとこうじ Yoshihisa Kitazawa きたざわ よしひさ Hirotaka Sugawara すがわら ひろたか

