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Characterization of classical chaos

• Sensitivity to a small perturbation. 
Lyapunov exponent λL>0.
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Characterization of quantum chaos

• Sensitivity to a small perturbation. 
Lyapunov exponent λL>0.                           
(Out-of-time-order correlation functions)

• ‘Universal’ energy spectrum.                         
Fine-grained energy spectrum should 
agree with Random Matrix Theory (RMT). 

Late time

Early time

‘Black Holes and Random Matrices’ 
@ STRINGS 2017 by S. Shenker

D. Stanford’s talk in this conference
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Characterization of quantum chaos

• Sensitivity to a small perturbation. 
Lyapunov exponent λL>0.                           
(Out-of-time-order correlation functions)

• ‘Universal’ energy spectrum.                         
Fine-grained energy spectrum should 
agree with Random Matrix Theory (RMT). 

RMT is hidden here as well

Also in classical chaos

Interesting connection to quantum gravity

Early time

Late time
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Lyapunov exponents

(Lyapunov spectrum)



Lyapunov Spectrum in Classical Chaos

• Classical phase space is multi-dimensional. 

• Perturbation can grow or shrink to various directions.

singular value si(t)

eigenvalue si(t)2

finite-time Lyapunov exponents



Largest Exponent is not enough

λ1=100

λ2=λ3=…λ1000=0
λ1=λ2=…λ1000=1

Which is more chaotic?



Coarse-grained entropy and  
Kolmogorov-Sinai Entropy

eλt
Coarse-grained entropy 

         ＝ log[# of cells to cover the region]

         ～ (sum of positive λ) × t

KS entropy ＝ (sum of positive λ) 

                   ＝ entropy production rate

# of cells to cover the region ～ Π exp(λt)
λ>0



Largest Exponent is not enough

λ1=100

λ2=λ3=…λ1000=0
λ1=λ2=…λ1000=1

Which is more chaotic?

λ1++λ2+…+λ1000=100 λ1++λ2+…+λ1000=1000

More chaotic



Bigger black hole is colder.

Bigger black hole is less chaotic?
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• Universality of classical Lyapunov spectrum 

• Universality of quantum Lyapunov spectrum

Plan

Gharibyan, MH, Swingle, Tezuka, in progress

MH, Shimada, Tezuka, PRE 2018



→ singular value si(t)

finite-time Lyapunov exponents

Lyapunov Spectrum

→ eigenvalue si(t)2



Lyapunov Spectrum

Easily to calculate with good precision



black hole
in IIA string equivalent D0-brane matrix model

high-T = classicalhigh-T = ‘stringy’

BHstring

negligible at high-T 

D0-brane matrix model



Fitting ansatz

Gur Ari-MH-Shenker, JHEP2016

t=20.7 T=1

N

N



• The correlation of the finite-time Lyapunov 
exponents may have a universal behavior?

• N→∞ before t→∞

(In chaos community, often t→∞ is taken first.)

RMT vs Classical Chaos

(different from si = exp(λit), sorry for using the same letter!)

(Some hints found in the previous study by Gur-Ari, MH, Shenker)



GOE-distribution at any time

Lyapunov exponents are described by RMT
M.H.-Shimada-Tezuka, PRE 2018

t=0 t=10



with a mass term (→no gravity interpretation), 
GOE is gone, at t=0.

m=3, t=0



But GOE is back at later time

t=3t=0



• Universality beyond nearest-neighbor can be checked.  
(Spectral Form Factor)

• D0-brane matrix model — RMT already t=0

• Other systems — not RMT at t=0, but gradually 
converges to RMT.

• So far we have looked at only the bulk of the spectrum;             
not the edge.

Maybe a special property of quantum gravitational systems?

Likely to be a universal property in classical chaos. 
Generalization to quantum theory?

Summary of numerical observations



Early-time universality in quantum chaos

Gharibyan, MH, Swingle, Tezuka, in progress



• There is no consensus for the definition of ‘quantum 
Lyapunov spectrum’ 

• Let’s try the simplest choice:

grows exponentially

cannot capture the growth



SYK model

maximally chaotic integrable



Lyapunov growth

(T=∞)

λNt λNt

   t    t

Preliminary

20% 80%



Lyapunov growth

λi λi

Preliminary

80% 80%20%20%



RMT behavior
Poisson

GUE
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RMT behavior
K > 0 → chaotic at high energy, non-chaotic at low energy


Our numerical data suggests:


Brownian circuit version is consistent with this interpretation. 

Chaotic states → RMT


non-chaotic states → Poisson

(Garcia-Garcia, Loureiro, Romero-Bermudez, Tezuka, 2017)



Spin chain (XXZ model)

XXX model random magnetic field

• Ergodic at small

• Many-body localized (MBL) at large 



Spin chain (XXZ model)

w=0.5 (ergodic phase), T=∞
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Spin chain (XXZ model)

N=7

N=6

N=5

N=4

exponential 

growth

power growth

(ballistic growth of operator size?)

power growth

(diffusion?)

Preliminary

w=0.5 (ergodic phase), T=∞



RMT vs Lyapunov spectrum in XXZ model

N=10, w=0.5 (ergodic phase)
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RMT vs Lyapunov spectrum in XXZ model

N=10, w=4.0 (MBL phase)

Poisson

GUE
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Summary of numerical observations

• Classical chaos 

• Quantum chaos 

• Lyapunov growth can be seen precisely.

D0 matrix model — ‘strongly’ universal

Other chaotic systems — universal

SYK — ‘strongly’ universal

Other chaotic systems — universal

MBL — not universal (Poisson-like)



Conclusion & Outlook
The largest Lyapunov exponent is not enough.


Lyapunov spectrum captures physics more precisely. 


New universality. 


Black hole is (probably) special.


What is the mechanism?


How can we formulate the spectrum in gravity side?


Relation to the late time universality (energy spectrum)?


‘KS entropy’ vs EE growth rate? 


Generalization of the chaos bound to KS entropy?


