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Modular forms play an important role in number theory and 
physics because they count things:
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When the things being counted live in vector spaces 
which are representations of a finite group G we often say 
informally that the modular form “exhibits moonshine for 
G.”
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But Moonshine should be more: exceptional, special, 
sporadic, mysterious, finite in number. Ideas of what 
moonshine is and is not are evolving.

I will discuss two kinds of Moonshine with these properties:

1. Umbral: Started with EOT K3/M24 observation (2010). 
Generalized to other Jacobi forms and groups classified 
by Niemeier lattices (Cheng, Duncan, H).

2. Penumbral: Started with Thompson moonshine (H, 
Rayhaun), generalized to other skew-holo Jacobi forms 
(Duncan, H, Rayhaun, to appear).

Since Moonshine involves many of the same forms and 
techniques as CFT and BH counting we hope to learn 
something new about string theory.



Common element of Monstrous, Umbral and Penumbral 
moonshine:  Role of genus zero groups
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Classify cases of umbral and penumbral moonshine.

⌧h

twist

twine

g

Given                                   (                     ) g, h 2 M gh = hg ⇡1(T
2) ! M

= Z(g, h; ⌧) = TrVghq
L0�c/24

In (generalized) Monstrous Moonshine these are all genus 
zero functions (Conway, Norton, Queen, Borcherds, 
Carnahan)

Ogg: for p prime           is genus zero precisely when 
p divides the order of the Monster.      

p+ p
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Umbral Moonshine

optimal mock Jacobi theta 

39 non-Fricke genus zero groups

(Cheng&Duncan)
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Two  Parallel Worlds of Weight 1/2 Moonshine

Umbral Penumbral
Modular 
objects

Moonshine 
Groups

Explicit 
Constructions

Physics 
Connections

Genus zero 
groups

Optimal weight 1/2, 
mock Jacobi forms

non-Fricke

M24, Aut(Niemeier)

For several, not 
uniform

K3 elliptic genus

Optimal weight 1/2 
modular skew-holo 
Jacobi forms
Fricke

Groups of generalized 
moonshine? Lattices?

None yet

BPS counting functions 
at attractor points and 
Lifts (S. Harrison)
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What is a skew-holomorphic Jacobi form?
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Weight 1/2, these transform under a double 
cover of the modular group “Weil representation 
of the metaplectic group”
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Examples at m=1  (                                       )

f0 = ✓(⌧) = 1 + 2q + 2q4 + 2q9 + 2q16 +O(q25)

f3 = q
�3 � 248q + 26752q4 � 85995q5 + 1707264q8 +O(q9)

f4 = q
�4 + 492q + 143376q4 + 565760q5 + 18473000q8 +O(q9)

f7 = q
�7 � 4119q + 8288256q4 � 52756480q5 + 5734772736q8 +O(q9)

f(⌧) = h0(4⌧) + h1(4⌧)

(Borcherds, Zagier)

. . .

Skew-holo Jacobi forms in strings/BPS counting will be 
discussed by S. Harrison
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SL2(Z)
q�1j(⌧)Rademacher:         can be obtained by averaging       

over              modulo its stabilizer, but one must 
regularize. This can be generalized to other genus 
zero hauptmoduls (Knopp, Duncan&Frenkel)

Extended to other weights and multiplier systems by 
Knopp, Niebur, Bringmann-Ono, Cheng-Duncan.

f0(⌧) = Reg

0

@
X

�2�inv/�0

fpolar
0 |�

1

Aholomorphic, not 
obviously modular

What role does genus zero play?

j(⌧) = q�1 + 196884q + 21493760q2 + 864299970q3 + · · ·



Farey Tales (Dijkgraaf, Maldacena, Moore,Verlinde, 
Manschot,…):
An interpretation as a sum over asymptotic           
geometries with       boundary in context of BH 
counting

T 2
AdS3

Obstruction to modularity of Rademacher sums:

0 ! M !
k ! Mk ! S2�k ! 0

Mock Cusp (shadow)Modular
on � < SL(2,R)

Main Point: At weight zero, Rademacher gives modular 
functions when there are no weight two cusp forms               
and mock modular forms otherwise. 

s(⌧)d⌧ = s(⌧ 0)d⌧ 0Weight 2:

genus (       )  >0

holo 1-form on

�\H

�\H



When Rademacher gives mock modular forms, they 
have rational coefficients only when the shadows are 
theta functions in one variable

0 ! M0(m) ! M0(m) ! S2(m) ! 0

0 ! M1/2(⇢m) ! M1/2(⇢m) ! S3/2(⇢̄m) ! 0

Shimura, Shintani, Brunier, 
Ono, Skoruppa, Zagier

Cheng-Duncan: Genus zero classification of optimal 
mock Jacobi theta functions (including Umbral forms)

Duncan, H, Rayhaun: Genus zero classification of 
possible skew-holo Jacobi forms of penumbral 
moonshine



What are some examples of penumbral moonshine?



SL2(R)

D0For a given      such forms exist for finitely many m 
(lambency) indexed by genus zero (Fricke) 
subgroups of              .

Optimal skew-holo Jacobi forms of penumbral moonshine
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F3(⌧) = 2f3(⌧) + 248✓(⌧) =
X

m

c(m)qmThompson:



The first few allowed m values are 1,3,7,13,19,21,31.

m=1 is the Thompson moonshine example.

m=13,19,31 are the other prime values m dividing the 
order of Th. For 19,31 the centralizers are Abelian 
cyclic groups of these orders.

m=3 leads to moonshine for             which is related 
to the centralizer of an element of order 3 in Th.

3.G2(3)

m=7 leads to moonshine for          which is related to 
the centralizers of an element of order 7 in Th.

L2(7)

D0 = �3
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(m,D0) = (1,�4)
F0 = q�1 � 492 + 2⇥ 142884q + 2⇥ 18473000q2 + · · ·
F1 = 2⇥ 565760q5/4 + 2⇥ 51179520q9/4 + · · ·

Moonshine for 2.F4(2)

(m,D0) = (4,�15)
Moonshine for Baby Monster as 
realized in Hohn’s c=23 1/2 CFT

(m,D0) = (6,�23)
⌘J(⌧) = q�23/24 � q1/24 + 196883q25/24 + 21296876q49/24 + · · ·

Moonshine for Monster at weight 1/2 
(decomposition into Virasoro characters)



What does it all mean?

There are many connections to generalized Monstrous 
Moonshine via Groups and Lifts.

Mathematically umbral and penumbral moonshine look 
like two sides of a single coin: 

M1/2(⇢m)

non-Fricke
M1/2(⇢m)

Fricke

For each prime p dividing         there is a weakly 
holomorphic weight 1/2 form 

|M|
f (p) =

X

n

c(p)(n)qn

Z(g, 1, ⌧) = q�c
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There is also an intricate relation between lifts of the 
twined weight 1/2 forms of Thompson moonshine and 
the twines of the 3C twisted generalize moonshine 
weight 0 forms of L. Queen

On the physics side we would like to understand

Is there a physical interpretation of weight 1/2 forms 
that lift to twined partition functions of CFT?

Where do skew-holo Jacobi forms arise in BPS 
state counting and is there a physics version of the 
mathematical similarity between holo and skew-
holo Jacobi forms?

Does string theory provide an understanding of the 
vector spaces and representations being counted 
in these new examples of moonshine?



Thank You
(and please enjoy the moonshine tonight)



盛者必衰


