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Monstrous Moonshine

Several years ago we found some curious phenomenon
in string theory [1], i.e. appearance of exotic discrete
symmetries in the theory. This is now called as moon-
shine phenomenon and is now under intensive study.
Today I would like to give you a brief introduction to
moonshine phenomena which may possibly play an in-
teresting role in string theory in the future.

Before going to the moonshine phenomenon in string
theory let me briefly recall the story of monstrous moon-
shine which is well-known. Modular J function has a
g-series expansion

1
J(q) = p + 744 + 196884q + 21493760¢> + 864299970¢°>

+20245856256q9* + 333202640600¢° + - - - .

LT a’T+b a b
a =&, Im(r) >0, J(r) = I, (4]

SL(2,7
ct +d )E ( )

It turns out g-expansion coefficients of J-function are
decomposed into a sum of dimensions of irreducible
representations of the monster group M as

196884 = 1 4 196883, 21493760 = 1 + 196883 + 21296876,

864299970 = 2 X 1 4 2 X 196883 + 21296876 4 842609326,

20245856256 =1 X 1 + 3 X 196883 + 2 X 21296876
4842609326 + 19360062527, - - - .

1



Dimensions of irreducible representations of monster
are in fact given by
{1, 196883, 21296876, 842609326,
18538750076, 19360062527 - - - }

Monster group is the largest sporadic discrete group,
of order =~ 10°® and the strange relationship between
modular form and the largest discrete group was first
noted by McKay.

To be precise we may write as

Ji(t) =J(q) — 744 = ) c(n)q", c(0) =0
= Z Trym 1l X q", dimV (n) = c(n)

McKay-Thompson series is given by

Jg(1) = Z Trym)g X q", ge M

n=-—1

where Try(,) g denotes the character of a group ele-
ment g in the representation V(n). This depends on
the conjugacy class g of M. If McKay-Thompson se-
ries is known for all conjugacy classes, decomposition of
V (n) into irreducible representations become uniquely
determined. Series J, are modular forms with respect
to subgroups of SL(2,Z) and possess similar proper-
ties like the modular J-function such as the genus=0
(Hauptmodul) property.

Phenomenon of monstrous moonshine has been un-
derstood mathematically in early 1990’s using the tech-
nology of vertex operator algebra. However, we still do
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not have a ’simple’ physical explanation of this phe-
nomenon.

Elliptic genus

We now consider string theory compactified on Kj
surface. Kj surface is a complex 2-dimensional hy-
perKahler manifold and is ubiquitous in string theory. It
possesses SU (2) holonomy and a holomorphic 2-form.
Thus the string theory on K3 has an IN=4 superconfor-
mal symmetry and contains the level k = 1 affine SU (2)
symmetry and the central charge ¢ = 6.

Now instead of modular J-function we consider the
elliptic genus of K3 surface. Elliptic genus describes the
topological invariants of the target manifold and counts
the number of BPS states in the theory. Using world-
sheet variables it is written as

Zeniptic(23T) = Ty, xpp(—1) et =0 gho5i gho =i

Here Ly denotes the zero mode of the Visasoro operators
and Fp, and Fy are left and right moving fermion num-
bers. In ellitpic genus the right moving sector is frozen
to the supersymmetric ground states (BPS states) while
in the left moving sector all the states in the Hilbert

space Hy contribute.

N=4, level k theory contains a SUSY algebra

N

. o k .. _
{G}, Gy} = 2690 — 6%, (ihj=1,2) = Lo > |

k
BPS states possess Ly = "



In general it is difficult to compute elliptic genus,
however, we were able to evaluate it by making use of
Gepner models. Elliptic genus of K3 surface is given by
[2]:

2 2 2
metm = |(gan) + (aem) * (567) |
Here 0;(7, z) are Jacobi theta functions.

Zks3(z = 0) = 24, Zgs(z = %) =16 + O(q),
TT) =2q7 + O(q?)
It is known that the elliptic genus of a complex D-dimensional
manifold is a Jacobi form of weight=0 and index=D/2.

When D=2, space of Jacobi form is one-dimensional and
given by the above formula.

ZK3(Z =

Jacobi form (weight k£ and index m) is defined by

90(7-7 z+at + b) — 8_27rim(a2‘r+2az)90(7-a z)7
atr + b z

CT—I—d,CT—I—d

27'r'imcz2

) = (e + d)ke ertd (T, 2)

@(

We would like to study the decomposition of the el-
liptic genus in terms of irreducible representations of
N=4 SCA. In N=4 SCA, hightest-weight states |h, £) are
parametrized by

Lo|h,£) = h|h,£), J3|h, ) = £|h,£)

and the theory possesses two different type of represen-
tations, i.e. BPS and non-BPS representations. In the



case of k = 1 there are representations (in Ramond sec-
tor)

1 1
BPS rep. h = —; £L=0, —

4 2

1 1
non-BPS rep. h > Z; L= >

Character of a representation is given by
TT'R(_ 1)FqL0 e471'1lzJ(‘)3

Its index is given by the value at z = 0, Trg(—1)Fq.
BPS representations have a non-vanishing index

index (BPS, ¢ =0) =1
1
index (BPS, ¢ = 5) = —2

Character function of £ = 0 BPS representation has the
form [3]

z . 61(z;7)*

= WU(% T)

where

—1e q%
2T) = ——— —1)" ,
I“l'( Y ) 01(2; T) ;( ) 1 _ qnezﬂ.zz

s Tz n(n—+—1)62ﬂ'inz

On the other hand the character of non-BPS represen-
tations are given by

D 3 0 zsT 2
chy s, =q""¢ e 3)
T n(7)

These have vanishing indices
index (non-BPS rep) = 0

5



At the unitarity bound non-BPS representation splits
into a sum of two BPS representations

. _3
lim ¢" =
h—3

= ch,jjz 1+ QChR

_1 p_ —1 p__
=1t=3 =pt=0

A

Function p(z;7) is a typical example of the so-called
Mock theta functions (Lerch sum or Appell function).
Mock theta functions look like theta functions but they
have anomalous modular transformation laws and are
difficult to handle. Recently there were developments in
understanding the nature of Mock theta functions due
to Zwegers [4]. He has introduced a method of regu-
larization which is similar to those used in physics and
improved the modular property of mock theta functions
so that they transform as analytic Jacobi forms.

It is possible to derive the following idenities

oh i ver) — 0:(z;7)\ 2 _ 01(z;7)>
hh:i,é:o(a ) <92(0;T)) +,u2( ) 77(7.)3
_(63(z57)\? 7_6?1(z;7')2
= (aom) 0 e
04(z;7) 2 01(z; 7)2
(ar0m)) +mO 0y

where

pa(r )= (5= ) o (P )= (523 ), () =pu(a= s 7)

—1e q%
2T) = ————— 1" ,
I’l’( Y ) Hl(z; T) ;( ) 1 _ qnezﬂ.zz

s Tz n(n+1)627rinz




Then we can rewrite the ellitpic genus as

91(2 T)
n(7)?

Using g-expansion of functions p; we find

8 (p2(T) + pa(T) + pa(r)) = =2 A(n)q"

n=0

Zxs = 24chf:i,£:0(z; T) — SZ[J,Z(T)

Zis = 24ch; s, o(2,7) +2) A(n)ehi. ., i(z,7)

n>0

At smaller values of n, Fourier coefficients A(n) may
be obtained by direct inspection. We find, A(0) = —1

n |1 2 3 4 5 6 7 8 ---
A(n) |45 231 770 2277 5796 13915 30843 65550 ...

Surprize: the dimensions of irreducible reps. of Math-
ieu group M., appear

dimensions : { 45 231 770 990 1771 2024 2277
3312 3520 5313 5544 5796 10395 ---}

A(6) = 13915 = 3520 + 10395,
A(7) = 30843 = 10395 + 5796 + 5544 + 5313 + 2024 + 1771

Mathieu moonshine [1]

M, is a subgroup of S,, (permutation group of 24 ob-
jects) and its order is given by ~ 10°. M,, is known for
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its many interesting arithmetic properties and in partic-
ular intimately tied to Golay code of error corrections.

Mathieu group appeared before in the work of Mukai
on K3 surface.

Mulkai[5] considered K3 surfaces with finite automor -
phism group. Then these groups are sugbgroups of
Ms.

& Twisted Elliptic Genus

Dimension of a representation equals the trace of the
identity representation: we may identify as

An) =Try, 1
Vi = 45 + 45*, Vy = 231 + 231%, V3 = 770 + 7T70%, - - -

We may consider the trace of other group elements in
M24

Ag(n) =Try, g, g € Myy

Tr g depends only on the conjugacy class of g. There
exists 26 conjugacy classes {g} in M,, and also 26 ir-
reducible representations {R}. We have the character
table given by

X =T g



1A

23
252
253

1771
3520
45
a5
990
990
1035
1035

1035’
231
231
770

770
483
1265
2024
2277
3312
5313
5796
5544
10395

2A

28
13

-21

64

-18
-18
-21
-21

27

-14
-14

35
49

21
48
49

-28
-56
-21

3A 5A 4B 7A 7B 8A 6A 1IA 154 15B 14A 14B 23A 23B 12B 6B 4C 3B
111 1 111 1 1 1 1 1 1 1 111 1
5 3 3 2 2 1 1 1 0 0 0 0 0 o -1 1 -1 -1
9 2 4 0 o o 1 -1 -1 -1 0 0 -1 -1 o o o0 o
0 3 1 1 11 2 0 0 0 -1 -1 0 0 1111
6 1 5 0 0o -1 o 0 1 1 0 0 0 o -1 -1 -1 7
10 0 o -1 10 -2 0 0 0 1 1 1 1 o o o -8
o o 1 et e -1 0 1 0 0 -ef ey -1 -1 11 1 38
0o 0 1 ey ef 1 o0 1 0 0 ey et -1 -1 1113
o o 2 et e; 0 0 0 0 0 ef ey 1 1 1 1 2 3
o 0 2 e e 0 o0 0 0 0 ey ef 1 1 1 1 2 3
0 0 3 2ef 2e;7 -1 0 1 0 0 0 0 0 o -1 1 -1 -3
0 0 3 2e; 2ef 1 0 1 0 0 0 0 0 o -1 1 -1 -3
o o -1 -1 110 1 0 0 -1 -1 0 0 o 2 3 &
31 -1 0 o -1 1 0 efy eis 0 0 1 1 o o 3 o0
3 1 -1 0 o -1 1 0 ez el 0 0 1 1 o o 3 o
5 0 -2 0 o o 1 0 0 0 0 0 efy e S T A
5 0 2 0 o o0 1 0 0 0 0 0 ey edy 11 2 7
6 -2 3 0 o -1 2 -1 1 1 0 0 0 0 o o 3 o
5 0 1 2 2 1 1 0 0 0 0 0 0 0 o o 3 8
110 1 10 -1 0 -1 1 1 1 0 0 o o o 8
o 3 1 2 2 -1 0 0 0 0 0 0 0 0 o 2 3 6
o -3 0 1 1 0o o 1 0 0 -1 -1 0 0 o 2 o0 -6
15 3 -3 0 o -1 1 0 0 0 0 0 0 0 o o 3 o0
9 1 4 0 o o0 -1 -1 1 1 0 0 0 0 o o 0 o0
9 1 0 0 o o0 1 0 -1 1 0 0 1 1 o 0o 0 0
o o0 -1 0 o 1 o 0 0 0 0 0 -1 -1 o 0o 3 0
1
Character table of the Mathieu group M24 Here we have used e;‘,: = 5 (:I:\/ —p — 1).

(Some conjugacy classes are suppressed due to lack
of space).

There are two types of conjugacy classes in My, type
I and type II.
Conjugacy class of type I fixes at least one element out
of 24 and thus they arise from the conjugacy classes of
]\41?2;;.
On the other hand conjugacy class of type II does not
have a fixed point and is intrinsically May,.
For each conjugacy class we want to construct a twisted
genus (analogue of McKay-Thompson series in monstrous
moonshine)

Ag:ZTrVnqu"

n=1

For instance,
Ayq = —6q + 14¢® — 28q¢> + 42q* — 56q° + 86¢° + - - -
and has the right modular property (Z24 € I'og(2)).
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Twisted genus is decomposed into massless and mas-

sive parts

Zy(Ty2) = Xg Chfzi,ﬂzo + Z Ag(n)ch?+n’£:%(z, T)
n>0

Here x, is the Euler number assigned to the class g

g [1A 2A 3A 5A 4B 7A 8A 6A 11A 15A 14A 23A others

Xo H 24 8

6

4 4 3 2

2

2

1

1

1

Xg vanishes for type II classes. We note that x, can be

written as x, = xi + X33 which is equal to the number
of fixed points of the permutation rep. of g.

conjugacy class
1A
2A
3A
5A
4B
7A
7B
8A
6A
11A
15A
15B
14A
14B
23A
23B
12B
6B
4C
3B
2B
10A
21A
21B
4A
12A

cycle shape
124
18 . 28
16 . 36
14 .54
14 .22 .44
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Twisted genera for all conjugacy classes of My, have
been obtained by our efforts [6, 7]. They reproduce cor-
rect lower-order expansion coefficients and are invari-
ant under the Hecke subgroup I'g(IV)

I‘O(N)_{<a Z), ad —bc=1, c=0, mod N}

N denotes the order of the element g.
From the study of K3 surface with Z,(p = 2,3,-:-)

symmetry, for instance, twisted genera of classes pA(p =
2,3,--+) are known [8, 9]

2p
Zpa(z;7) = Po1(z7) + —— P (T)p_21(2;T)
1 p+1
where
1 0.(z;7)2
¢0,1(Z;7') = EZK3(z;T)7 ¢_2,1(z;7-) = —%

are the basis of Jacobi forms with index=1 and
24
o (1) = —qt‘? log (_n(m)) :
1 n(7)
= — Z o1(k)(q* — pg®*)
p— 13

is an element of I'y(p).
In the case of type Il twisted genera are modular forms
of I'o(IN) (with a multiplier system) . They are given in
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terms of quotients of eta functions.

1A

90

462

1540

4554

11592

27830
61686
131100
265650
521136
988770
1830248
3303630
5844762
10139734
17301060
29051484
48106430
78599556
126894174
202537080
319927608
500376870
775492564
1191453912
1815754710
2745870180
4122417420
6146311620
9104078592
13401053820
19609321554
28530824630
41286761478
59435554926
85137361430

2A

-6

14

-28
42
-56
86
-138
188
-238
336
-478
616
-786
1050
-1386
1764
-2212
2814
-3612
4510
-5544
6936
-8666
10612
-12936
15862
-19420
23532
-28348
34272
-41412
49618
-59178
70758
-84530
100310

3A

-6
10

-18
20

-30
42

-60
62

-90
118

-156
170

-228
270

-360
400

-510
600

-762
828

-1062
1220

-1518
1670

Zsp(z;T) =

Zsp(z;T)

Za(z;71)

Zyc(z;1)

g

' '
— —
OB NDONONOONONDONO

—

—
ok RO

—
o ™

-36
12

30

-50
22

34
-72

26
0

-36

100
-40
-116

126
-66
-154
70

-12

n(t)®
n(27)*
n(T)°
n(37)2

n(27)°
77(47')4¢ 2 1( 77-)7

n(r)'n(27)?
n(47)?

2——— ¢ 21( 77-)3

2———— ¢ 21( 77-)7

¢—2,1(Z; 7')

6A 11A 15A 14A 23A 12B 6B
0 2 (0] 1 -2 2 -2
2 (0] -1 0 2 0 (0]
2 0] (0] 0 -1 2 2
0 0 0 0 (0] 0 4
-2 -2 2 0 0 0 0
-4 0 0 2 0 0 0
0 -2 0 2 0 -2 -2
2 2 0 -1 0 0 0
2 0 2 0 0 -2 6
0 0 0 0 2 -2 2
-4 2 0 -2 0 0 0
-2 2 2 0 0 2 -6
0 0 0 -2 2 0 -4
6 0 0 0 2 0 0
6 0 -2 0 0 2 2
0 -4 0 0 0 2 6
-4 0 -1 0 0 0 0
-6 -2 (0] 0 -2 2 -6
0] 2 (0] 0 (0] -2 -6
4 0] 2 2 (0] 0 0
6 -2 0 0 0 -2 6
0 0] (0] -1 [¢] 0 4
-8 4 0 0 2 0 0
-8 0 0 0 0 0 -8
0 0 0 0 0 2 -10
10 0 0 0 -1 0 0
8 -2 0 -2 0 0 8
0 0 0 -2 0 0 12
-10 -2 -2 2 0 0 0
-12 4 -2 0 0 0 -8
0 0 0 0 -2 -2 -10
10 -2 -2 2 0 0 0
12 0 0 0 2 -4 12
0 6 0 2 0 0 12
-14 (0] 2 2 (0] 0] (0]
-10 (0] (0] 0 (0] -2 -18

& Proof of Mathieu moonshine

Orthogonality relation of characters:

g

an X5 XR

|G|oRrR

12

-44
-126

150
-66
-170

3B

-14
12

-16
30
0
-42
42
0
-70
84

-110
126

-166
210

-282
300
0
-392
462
0
-600
660

-840
966
0
-1204
1332

-1666

2B

10

-18

20
-38
72
-90
118
-180
258
-352
450
-600
830
-1062
1334
-1740
2268
-2850
3540
-4482
5640
-6968
8550
-10556
13064
-15930
19268
-23460
28548
-34352
41180
-49518
59430
-70890
84222
-100170
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-18
-40
24
54
-28
-72
22
84
-36
-92
48
108
-46
138
54
158
-74
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ny is the number of elements in the conjugacy class g
and |G| denotes the order of the group. Let cg(n) be he
multiplicity of representation R in the decompostion of
K3 elliptic genus at level n. We then have

Z cr(n)xg = Ag(n)

Then using the orthogonality relation we find

1

zg: @ngXRgAg(n) = cr(n)

We have checked that the multiplicities cg(n) are all
positive integers upto n = 1000 and this gives a very
strong evidence for Mathieu moonshine conjecture.

45 990 1035 , 231 770
23 252 253 1771 3520 = —_— 1035 = — 483 265
45 990 1035 231 770

0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 ) 0 1 0 0
0 0 0 0 0 0 0 0 ) 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ) 0
0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 1 1 0 0 0 0 2
0 0 0 2 4 0 0 2 2 0 2 2 )
0 0 2 4 8 0 2 2 2 2 0 2 4
0 0 0 8 12 0 4 4 6 0 4 0 2
2 2 4 12 30 0 8 8 4 2 6 4 12
0 4 2 26 44 2 14 14 18 2 10 6 16
0 4 6 38 86 0 24 24 22 8 16 14 34
0 12 8 78 144 2 40 44 46 8 38 18 16
2 18 22 122 252 2 72 72 68 18 50 36 100
2 30 26 212 410 8 116 124 130 25 94 54 140
6 50 58 342 704 6 194 202 192 50 148 100 256
4 80 72 582 1116 18 318 332 346 68 252 150 394
14 128 138 904 1836 20 516 536 520 126 390 254 676
20 214 200 1476 2902 40 814 860 872 182 652 396 1020
32 328 346 2302 4616 55 1298 1348 1336 314 988 640 1686
40 512 496 3638 7166 98 2020 2118 2144 460 1590 972 2546
80 798 824 5584 11192 132 3140 3278 3236 744 2426 1544 4050
108 1232 1208 8654 17084 234 4814 5038 5084 1106 3764 2336 6108
174 1860 1904 13090 26148 322 7348 7670 7626 1742 5677 3602 9444
252 2836 2802 19914 39436 514 11092 11618 11666 2560 8688 5394 14100
398 4238 4310 29772 59330 742 16686 17418 17356 3922 12912 8160 21414
560 6328 6286 44512 88280 1154 24840 25994 26078 5758 19380 12090 31636

876 9368 9486 65776 131020 1642 36824 38480 38368 8642 28580 18008 47172
1236 13802 13764 97060 192538 2500 54178 56660 56800 12582 42218 26384 69082
1866 20166 20356 141714 282074 3564 79320 82884 82730 18576 61574 38738 101530
2664 29396 29374 206524 410062 5286 115334 120644 120798 26830 89868 56226 147156
3900 42474 42810 298508 593800 7542 166990 174510 174330 39066 129694 81546 213644
5536 61184 61234 430134 854284 10988 240304 251292 251544 55956 187094 117138 306736
8058 87622 88196 615626 1224424 15560 344314 359902 359564 80470 267604 168092 440318

Recently Gannon has proved by mathematical induc-
tion that the multiplicities are all positive integers.
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86

140
246
388
664
1036
1684
2630
4162
6376
9892
14968
22744
34026
50892
75158
110920
161978
236010
341154
491602
703542

2277
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124506
182554
265136
384250
552494
792158
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14

26

44

80

138
232
392
654
1062
1716
2742
4324
6768
10500
16112
24566
37148
55764
83146
123176
181274
265284
385974
558530
804038
1151786



Unfortunately the proof so far did not provide much
insight into the nature of Mathieu moonshine. The sit-
uation is a bit like the case of Monstrous moonshine.
24 of M4 will certainly be the Euler number of K3 and
M5, permutes homology classes. There are, however,
various indications that string theory on K3 can not
have such a high symmetry as M,,. Instead of the to-
tal Hilbert space the BRS subsector of the theory may
possibly possess an enhanced symmetry. It will be in-
teresting to look into the algebraic structures of BPS
states to explain Mathieu moonshine.

More Moonshine Phenomena

Recently there have been intense interests in explor-
ing new types of moonshine phenomena other than Math-
ieu moonshine. Already several types of new moonshine
phenomena have been discovered.

e Umbral moonshine [11, 12]

e free fermions on 24 dim. lattice
e moonshine of Spin(7) manifolds
o

Umbral moonshine was first discovered by generaliz-
ing the Mathieu moonshine for the case of Jacobi forms
with higher index such as

Z(k=2)=a <M>2+ <M)2+ (Mﬂ

62(0)65(0) 62(0)64(0) 65(0)64(0)

(e + (55) ()

When we take a special value a = 4,b = 0, for instance,
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one finds a moonshine phenomenon with the symmetry
group M, acting on this theory.

There is a mysterious relation between Umbral moon-
shine and Niemeier lattice (self-dual lattices in 24 di-
mensions). Niemeier lattice is given by a combination
of A-D-E type root lattice with appropriate weight vec-
tors so that the lattice becomes self-dual. If one divides
the automorphisim group of Niemeier lattice by the au-
tomorphism group of A-D-E lattice one obtains discrete
groups

G1 — M24, G2 — M12, G3 — 2.23L3(2), G4 — 2'56’ G(; — 2.A4

which agrees exactly with the symmetry groups of Um-
bral moonshine. At the moment there is no explanation
of this coincidence.

Moonshine symmetries recently discovered in string
theory are still very mysterious and we may encounter
many more surprises in the near future.

References

[1] T.Eguchi, H.Ooguri and Y.Tachikawa, "Notes on
the K3 surface and the Mathiei group M24”, Ex-
perimental Mathematics 20 (2011) 91-98.

[2] T.Eguchi, H.Ooguri, A.Taormina and S.-K. Yang,
"Superconformal Algebras and String Compact-
ification on Manifolds with SU(N) Holonomy”,
Nucl.Phys.B315 (1989) 193-221.

[3] T.Eguchi and A.Taormina, "Character formulas
for the N=4 superconformal algebra,” Phys.Lett.
B 200 (1989) 315.

15



[4] S.P.Zwegers, "Moch Theta Functions,” Ph.D. The-
sis, arXiv:0807.4834[math.NT].

[5] S.Mukai, "Finite group of automorphisms of K3
surfaces and the Mathieu group,” Invent. Math.
94 (1988) 183.

[6] M.Gaberdiel, S.Hohenegger and R.Voltapo, "Math-
ieu moonshine in the elliptic genus of K3,” JHEP
1010 (2010) 062, arXiv:1008.3778 [hep-th].

[7] T.Eguchi and K.Hikami, "Note on twisted ellip-
tic genus of K3 surface,” Phys.Lett.B694 (2011)
446,arXiv:1008.4924 [hep-th].

[8] A.Sen, ”“Discrete information from CHL black
holes”, arXiv;1002.3857[hep-th],2016.

[9] M.Cheng, K3 surface, N=4 Dyons, and the Math-
ieu group M24”; arXiv:1005.5415[hep.th].

[10] T.Gannon, "Much Ado about Mathieu,”
arXiv:1211.5531[math.RT].

[11] M.Cheng, J.Duncan and J.Harvey, “Umbral
moonshine”, Commun.Num.Theor.Phys.08 (2014)

101; "Umbral moonshine and the Niemeier lat-
tice”, arXiv:1307.5793[math.RT].

[12] M.Cheng and S.Harrison, Umbral moonshine and
K3 surface, Commun. Math. Phys. 339 no.1, 221
(2015) [arXiv:1406.0619][hep-th]]

16



