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The goal of this lecture is to explain two things:

(1) The Reeh-Schlieder theorem (1961), which is the basic result
showing that entanglement is unavoidable in quantum field theory.

(2) A very specific version of monotonicity of relative entropy in
quantum field theory: relative entropy is monotonic under
decreasing the size of a region.

The second statement was used by A. Wall in proving a generalized
second law of thermodynamics in the presence of a black hole.

If one is familiar with the proof of this second statement, it is not
too difficult to understand the general proof of strong subadditivity
of quantum entropy (which has had many additional applications)
and its close cousin, monotonicity of entropy in a general quantum
channel, but we will not have time for this. (This and many related
matters are described in my article “Notes On Some Entanglement
Properties Of Quantum Field Theory,” on the arXiv.)



We begin with the Reeh-Schlieder theorem, which must have
seemed paradoxical when it was first discovered in 1961. We
consider a quantum field theory in Minkowski spacetime M, with a
Hilbert space H that contains a vacuum state Ω. There is an
algebra of local operators, whose action can produce “all” states
(or at least all states in a superselection sector) from the vacuum.
For simplicity in the notation, we will assume that this operator
algebra is generated by a hermitian scalar field φ(x). So states

φ(x1)φ(x2) · · ·φ(xn)|Ω〉

with arbitrary n and points x1, . . . , xn ∈ M, are dense in H.



The Reeh-Schlieder theorem says that actually, we get a dense set
of states (in the vacuum sector of H) if we restrict the points
x1, · · · , xn to any possibly very small open set U ⊂ M:

If this is false, there is a state χ in the vacuum sector such that

〈χ|φ(x1)φ(x2) · · ·φ(xn)|Ω〉 = 0

whenever x1, · · · , xn ∈ U .



We will show that any such χ actually satisfies

〈χ|φ(x1)φ(x2) · · ·φ(xn)|Ω〉 = 0

for all xi ∈ M. Since states created by the φ’s are dense (in the
vacuum sector) this implies that χ = 0.

Let us define

f (x1, x2, · · · xn) = 〈χ|φ(x1)φ(x2) · · ·φ(xn)|Ω〉.

We are given that this function vanishes if the xi are in U and we
want to prove that it vanishes for all xi .



As a first step, pick a future-pointing timelike vector t and consider
shifting xn by a real multiple of t:

xn → xn + ut.

Let
g(u) = 〈χ|φ(x1)φ(x2) · · ·φ(xn−1)φ(xn + ut)|Ω〉

with xi ∈ U . We have g(u) = 0 for sufficiently small real u
because then xn + ut is still in u. Also with H the Hamiltonian for
translation in the t direction,

g(u) = 〈χ|φ(x1)φ(x2) · · · exp(iHu)φ(xn) exp(−iHu)|Ω〉.

Since HΩ = 0 this is

g(u) = 〈χ|φ(x1)φ(x2) · · · exp(iHu)φ(xn)|Ω〉

and since H is nonnegative, g(u) is holomorphic in the upper half
u-plane.



Such a function is zero. If we knew g(u) to be holomorphic on the
real axis and vanishing on a segment I of the real axis, we would
say that g(u) has a convergent Taylor series expansion around a
point p ∈ I and this expansion would have to be identically zero to
make g(u) vanish on the axis. To begin with we only know that
g(u) is holomorphic above the real axis, not on it, but we can get
around this using the Cauchy integral formula:
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So now we know that (keeping x1, · · · , xn−1 ∈ U)

〈χ|φ(x1) · · ·φ(xn−1)φ(x ′n)|Ω〉

vanishes if x ′n = xn + ut where t is a timelike vector and u is any
real number. Now we do this again, picking another timelike vector
t′ and replacing x ′n by x ′′n = x ′n + u′t′ with u′ real. Repeating the
argument, we learn that

〈χ|φ(x1) · · ·φ(xn−1)φ(x ′′n )|Ω〉 = 0

for any such x ′′n . But since any point in M can be reached from U
by zigzagging backwards and forwards in various timelike
directions, we learn that

〈χ|φ(x1) · · ·φ(xn−1)φ(xn)|Ω〉 = 0

for x1, · · · , xn−1 ∈ U with no restriction on xn.



The next step is to remove the restriction on xn−1. We pick t as
before and now consider a common shift of xn−1 and xn in the t
direction

(xn−1, xn)→ (x ′n−1, x
′
n) = (xn−1 + ut, xn + ut)

Now we look at

h(u) = 〈χ|φ(x1)φ(x2) · · ·φ(xn−1 + ut)φ(xn + ut)|Ω〉

It vanishes for small real u, and it can be written

h(u) = 〈χ|φ(x1)φ(x2) · · · exp(iuH)φ(xn−1)φ(xn)|Ω〉,

which implies that h(u) is holomorphic in the upper half plane.
Hence h(u) is identically 0.



Repeating the process by shifting xn−1 and xn in some other
timelike direction, we learn that

〈χ|φ(x1) · · ·φ(xn−1)φ(xn)|Ω〉

vanishes for x1, · · · , xn−2 ∈ U with no restriction on xn−1, xn. The
next step is to remove the restriction on xn−2. We do this in
exactly the same way, by considering what happens when we shift
the last three coordinates by a common timelike vector. And so on.



So we end up proving the Reeh-Schlieder theorem: an “arbitrary”
state (more exactly, a dense set of states in the vacuum sector of
Hilbert space) can be created from the vacuum by acting with a
product of local operators in a small open set U ⊂ M.



Now I want to discuss the interpretation of this theorem. The first
question that I want to dispose of is whether it contradicts
causality. It certainly sounds unintuitive at first sight. Consider a
state of the universe that on some initial time slice looks like the
vacuum near U , but contains the planet Jupiter at a distant region
spacelike V separated from U . Let J be a “Jupiter” operator
whose expectation value in a state that contains the planet Jupiter
in region V is close to 1, while its expectation value is close to 0
otherwise. The Reeh-Schlieder theorem says that there is an
operator X in region V such that the state XΩ contains the planet
Jupiter in region V. So

〈Ω|J|Ω〉 ∼= 0, 〈XΩ|J|XΩ〉 ∼= 1.

Is this a contradiction? Since X is supported in U and J in the
spacelike separated region V , X † and J commute. So

1 ∼= 〈XΩ|J|XΩ〉 = 〈Ω|X †JX |Ω〉 = 〈Ω|JX †X |Ω〉.



If X were unitary there would be a contradiction between the
statements

0 ∼= 〈Ω|J|Ω〉

and
1 ∼= 〈Ω|JX †X |Ω〉,

because if X is unitary, then X †X = 1. But the Reeh-Schlieder
theorem does not tell us that we can pick X to be unitary; it just
tells us that there is some X in region U that will create the planet
Jupiter in a distant region V.

In comparing the above formulas, all we have found is that in the
vacuum, the operators J and X †X have a nonzero correlation
function in the vacuum at spacelike separation. There is no
contradiction there; spacelike correlations in quantum field theory
are ubiquitous, even in free field theory.



The intuitive interpretation of the Reeh-Schlieder theorem involves
entanglement between the degrees of freedom inside an open set U
and those at spacelike separation from U . To explain the intuitive
picture, let us imagine that the Hilbert space H of our QFT has a
factorization

H = HU ⊗HU ′

where HU describes the degrees of freedom in region U and HU ′

describes all of the degrees of freedom outside of U . Then any
state in H, such as the vacuum state Ω, would have a
decomposition

Ω =
∑
i

√
piψ

i
U ⊗ ψi

U ′

where we can assume the states ψi
U and also ψi

U ′ to be
orthonormal and we assume the pi are all positive (otherwise we
drop some terms from the sum).



In general when we write

Ω =
∑
i

√
piψ

i
U ⊗ ψi

U ′

the ψi
U and ψi

U ′ do not form a basis of HU or of HU ′ , because
there are not enough of them. However, something like the
Reeh-Schlieder theorem will be true for any state Ω such that the
ψi
U and the ψi

U ′ do form bases of their respective spaces. Using the
fact that the ψi

U ′ are a basis of HU ′ , we would be able to expand
any state Ψ ∈ H as

Ψ =
∑
i

λiU ⊗ ψi
U ′ , λi ∈ HU .

Then because the ψi
U are a basis and the pi are nonzero, we can

define a linear operator X acting on HU by

X (
√
piψ

i
U ) = λi

and we see that we have found an operator X acting only on
degrees of freedom in U such that

XΩ = Ψ.



A state
Ω =

∑
i

√
piψ

i
U ⊗ ψi

U ′

where the pi are all positive and the ψi
U , ψi

U ′ are bases might be
called a “fully” entangled state. (I don’t think this is standard
terminology.) We call a state “maximally” entangled if the pi are
all equal (this is not possible for Hilbert spaces of infinite
dimension, as in quantum field theory). The Reeh-Schlieder
theorem means intuitively that the vacuum state Ω of a quantum
field theory is fully entangled in this sense, between the inside and
outside of an arbitrary open set U .



However, the decomposition

H = HU ⊗HU ′

that we started with is certainly not literally valid in quantum field
theory. If it were, then in H there would be an unentangled pure
state ψ ⊗ χ, ψ ∈ HU , χ ∈ HU ′ .This contradicts the fact that in
quantum field theory there is a universal ultraviolet divergence in
the entanglement entropy: the entanglement entropy of the
vacuum between degrees of freedom in U and those outside of U is
ultraviolet divergent, and the leading ultraviolet divergence is
universal, that is it is the same for any state. The leading
divergence is universal because any state looks like the vacuum at
short distances.



Now let us discuss an important corollary of the Reeh-Schlieder
theorem. Let U and V be spacelike separated open sets in
Minkowski spacetime:

Let b be an operator supported in V. Suppose that

bΩ = 0.

Then if a is supported in U , we have

b(aΩ) = abΩ = 0,

where I use the fact that [a, b] = 0 since U and V are spacelike
separated. But the states aΩ are dense in H (according to
Reeh-Schlieder) so b identically vanishes.



Thus if b 6= 0 is supported in a spacelike open set V that is small
enough that it is spacelike separated from another open set U , then

bΩ 6= 0.

The roles of U and V are symmetrical, so also for a 6= 0 supported
in U ,

aΩ 6= 0.



Let AU be the algebra of operators in region U . We have proved
two facts about the algebra AU acting on the vacuum sector H:

(1) States aΩ, a ∈ AU , are dense in H. This is described by saying
that Ω is a “cyclic” vector for the algebra AU .

(2) For any nonzero a ∈ AU , aΩ 6= 0. This is described by saying
that Ω is a “separating” vector of AU .

In short, the Reeh-Schlieder theorem and its corollary say that the
vacuum is a cyclic separating vector for AU .



Consider a quantum system with a Hilbert space H = H1 ⊗H2

and let A be the algebra of operators on H1. A little thought
shows that a general vector Ψ expanded in the usual way

Ψ =
∑
i

√
piψ

i
1 ⊗ ψi

2

is cyclic for A if the ψi
2 are a basis of H2, and it is separating for

A if the ψi
1 are a basis for H1. So that is the meaning of the cyclic

separating property if the Hilbert space is a tensor product.



What about quantum field theory? A mathematical machinery
that can be useful for analyzing entanglement when the Hilbert
space does not factorize is called Tomita-Takesaki theory. It
applies whenever one has an algebra A acting on a Hilbert space
H with a cyclic separating vector.



The starting point in Tomita-Takesaki theory is that, given an
algebra A with cyclic separating vector Ψ, we define an antilinear
operator

SΨ : H → H

by
SΨaΨ = a†Ψ.

The definition makes sense because of the separating property (if
we could have aΨ = 0 with a†Ψ 6= 0, we would get a
contradiction) and it does define SΨ on a dense set of states in H,
because of the cyclic property (states aΨ are dense in H). A
couple of obvious facts are that

S2
Ψ = 1

(which in particular says that SΨ is invertible) and

SΨ|Ψ〉 = |Ψ〉.



The modular operator is a linear, self-adjoint operator defined by

∆Ψ = S†ΨSΨ.

(The definition of the adjoint of an antilinear operator is
〈α|S |β〉 = 〈β|S†|α〉.) ∆Ψ is positive-definite because SΨ is
invertible.



We will also need the relative modular operator. Let the state Ψ
be cyclic separating, and let Φ be any other state. The relative
modular operator SΨ|Φ is an antilinear operator defined by

SΨ|Φa|Ψ〉 = a†|Φ〉.

Again the well-definedness of the definition depends on the cyclic
separating nature of Ψ, but no property of Φ is needed. In defining
SΨ|Φ, we assume that Ψ and Φ are unit vectors

〈Ψ|Ψ〉 = 〈Φ|Φ〉 = 1.

The relative modular operator is defined by

∆Ψ|Φ = S†Ψ|ΦSΨ|Φ.

It is still self-adjoint and positive semi-definite, but it is not
necessarily invertible. If Φ = Ψ then the definitions reduce to the
previous ones

SΨ|Ψ = SΨ, ∆Ψ|Ψ = ∆Ψ.



Now we are ready to define relative entropy in quantum field
theory. We fix an open set U (small enough so that the vacuum is
cyclic separating), and consider the algebra AU . Let Ψ be any
cyclic separating vector for AU , and Φ any other vector. The
relative entropy between the states Ψ and Φ, for measurements in
region U (as defined by Araki in the 1970’s) is

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ|Ψ〉.

It is not immediately obvious that this has anything to do with
relative entropy as defined for a general quantum system (and as
used for example in Casini’s proof of the Bekenstein bound), but it
is not hard to show that the definitions coincide. (The main step
in doing this is to understand the operators SΨ|Φ and ∆Ψ|Φ when
the Hilbert space does factorize. See for example section 4 of my
notes.)



First let us discuss positivity properties of relative entropy, defined
by

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ|Ψ〉.

First of all, if Φ = Ψ then we had

∆ΨΨ = Ψ

so
(log ∆Ψ)Ψ = 0

and hence the relative entropy between Ψ and itself is 0:

SΨ|Ψ(U) = 0.

But more than that, suppose that Φ = a′Ψ, where a′ is unitary and
[a′,AU ] = 0, so that measurements in region U cannot distinguish
Φ from Ψ. A short computation shows that in this case
∆Ψ|Φ = ∆Ψ so again

SΨ|a′Ψ(U) = 0.



Now consider a completely general state Φ. The inequality
− log λ ≥ 1− λ for a positive real number λ implies an operator
inequality − log ∆ ≥ 1−∆, implying

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ|Ψ〉 ≥ 〈Ψ|(1−∆Ψ|Φ)|Ψ〉

= 〈Ψ|Ψ〉 − 〈Ψ|S†Ψ|ΦSΨ|Φ|Ψ〉 = 〈Ψ|Ψ〉 − 〈Φ|Φ〉 = 0.

So in general
SΨ|Φ(U) ≥ 0.



Now we consider a smaller open set Ũ ⊂ U . Now we have two
different algebras AŨ ⊂ AU and two different operators SΨ|Φ;Ũ and

SΨ|Φ;U and associated modular operators ∆Ψ|Φ;Ũ and ∆Ψ|Φ;U . The

relative entropy beween Ψ and Φ for measurements in U is

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ;U |Ψ〉.

The corresponding relative entropy for measurements in Ũ is

SΨ|Φ(Ũ) = −〈Ψ| log ∆Ψ|Φ;Ũ |Ψ〉.

We want to prove that relative entropy is monotonic under
increasing the region considered:

SΨ|Φ(Ũ) ≤ SΨ|Φ(U).

This is an important statement for applications; I already
mentioned its use by A. Wall in proving a generalized second law.



The states Ψ and Φ will be held fixed in this discussion, so to
llighten the notation we will omit subscripts and denote the
operators just as SU , SŨ and likewise ∆U and ∆Ũ . The main point
of the proof is to show that as an operator

∆Ũ ≥ ∆U .

As I will explain in a moment, this implies

log ∆Ũ ≥ log ∆U . (∗)

The inequality we want

−〈Ψ| log ∆Ũ |Ψ〉 ≤ −〈Ψ| log ∆U |Ψ〉

is just a matrix element of inequality (∗) in the state Ψ.



To show that if P and Q are positive self-adjoint operators and

P ≥ Q (∗)

then also
logP ≥ logQ

let
R(t) = tP + (1− t)Q

so (by virtue of (∗)), R is an increasing function of t, in the sense
that Ṙ(t) ≥ 0. We have

logR(t) =

∫ ∞
0

ds

(
1

s
− 1

s + R

)
.

So
d

dt
logR(t) =

∫ ∞
0

ds
1

s + R
Ṙ

1

s + R
.

The integrand is positive since it is BAB with A,B positive
(A = Ṙ, B = 1/(s + R)), so the integral is positive and thus
d
dt logR ≥ 0. Hence R(1) ≥ R(0) or

logP ≥ logQ.



So monotonicity of relative entropy under increasing the region
considered will follow from an inequality

∆Ũ ≥ ∆U .

If we try to understand this inequality, we may get confused at
first. We have

∆Ũ = S†
Ũ
SŨ , ∆U = S†USU ,

Here the two S ’s were defined, naively, by the same formula

SŨaΨ = a†Φ, SUaΨ = a†Ψ

with the sole difference that a is in AŨ in one case and in AU in
the other. The algebra AU is bigger, so SU is defined on more
states. But states aΨ with a ∈ AŨ are already dense in Hilbert
space so actually SŨ and SU coincide on a dense set of states.



If one is careless, one might assume that two operators that agree
on a dense subspace of Hilbert space actually coincide. This is not
true, however, for unbounded operators such as SŨ and SU . We
have to remember that an unbounded operator is never defined on
all states in Hilbert space, only (at most) on a dense subspace.
The proper statement is that SU is an extension of SŨ , meaning
that SU is defined whenever SŨ is defined and, on states on which
they are both defined, they coincide. In our problem, SU is a
proper extension, because there are states aΨ, a ∈ AU , that are
not of the form aΨ, a ∈ AŨ . Anyway, the fact that SU is an
extension of SŨ implies, as a general Hilbert space statement, that

SŨ
†SŨ ≥ SU

†SU ,

which is what we need for monotonicity of relative entropy.



The intuitive idea of the inequality

SŨ
†SŨ ≥ SU

†SU

is that the fact that SŨ is defined on fewer states than SU is
defined on corresponds to a constraint that has been placed on the
states in the case of SŨ , and this constraint raises the energy. I will
give an analogy that aims to make this obvious. Instead of SU , we
will consider the exterior derivative d mapping zero-forms
(functions) on a manifold M to 1-forms. But we will assume that
M has a boundary N, and we will consider two different versions of
the operator d.



The first will be the operator d acting on differentiable functions
that are constrained to vanish on the boundary of X :

d̂ : f (x1, . . . , xn)→
(
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

)
, f |∂X = 0.

We also consider the same operator d without the constraint that
f vanishes on the boundary. Differentiable functions that vanish on
the boundary are dense in Hilbert space, so d̂ and d are each
defined on a dense subspace of Hilbert space; moreover, obviously,
d is an extension of d̂ since it is defined whenever d̂ is defined and
they agree when they are both defined.



Associated to d̂ is the Dirichlet Laplacian

∆̂ = d̂†d̂

and associated in the same way to d is the Neumann Laplacian

∆ = d†d.

Here ∆̂ and ∆ are nonnegative operators that coincide on a dense
set of states, but ∆̂ is more positive than ∆ because of the
constraint that the wavefunction should vanish on the boundary.



Indeed, ∆ is associated to the energy function

〈f |∆|f 〉 =
1

2

∫
M
dnx
√
g |df |2

but to get ∆̂ we should add a boundary term to the energy. In
fact, we can consider a family of operators ∆t , 0 ≤ t ≤ ∞
associated to the energy function

〈f |∆t |f 〉 =
1

2

∫
M
dnx
√
g |df |2 + t

∫
N
dn−1x

√
g |f |2.

Clearly the operator ∆t is an increasing function of t. For t = 0,
∆t is the Neumann Laplacian, and for t →∞, ∆t goes over to the
Dirichlet Laplacian ∆̂.

So ∆̂ ≥ ∆, which is analogous to our desired ∆Ũ ≥ ∆U . A
constraint on the state always raises the energy.



Just to make sure the analogy is clear, ∆Ũ is the operator
associated to the energy function

〈SŨΛ|SŨΛ〉

for a state Λ that should be in the domain of SŨ . ∆U is similarly
associated to

〈SUΛ|SUΛ〉

for a state Λ that should be in the larger domain of SU . The
second energy function is the same as the first except that it is
defined on a larger space of states; we can get the second from the
first by a constraint that removes some states. Such a constraint
can only raise the energy so ∆Ũ ≥ ∆U . (The precise proof uses the
projection onto the graph of an operator. See for example section
3.6 of my notes.)


