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Various local energy conditions are often discussed in classical 
general relativity:

Weak

Strong

Dominant

Null

These play a key role in our basic 
understanding of the universe:


Singularity theorems, no traversable 
wormholes, no time machines, etc.



They are all violated in quantum field theory.

[Epstein, Glaser, Jaffe '65]

Is it true? Violated by

no

not even close

no

not quite

free scalar

negative CC

negative CC

quantum effects

Weak

Strong

Dominant

Null



QFTs do satisfy

• Energy-entropy bounds

• Non-local energy conditions

Progress on understanding these bounds in QFT
(in flat spacetime, without gravity)

This talk:

Motivation

• Fundamental properties of unitary QFT

• Impose constraints on couplings constants, anomaly coefficients

• Predictions for real-world systems, e.g. 3d Ising

• Connect information-theoretic approaches to QFT with more 
traditional observables, i.e. correlation functions

• Tractable limit of AdS/CFT: calculate everything on both sides



Outline

I. The ANEC


II. Holographic CFTs


III. Energy vs. entropy

Focus on: null energy Tuu



The ANEC: Averaged null energy condition
Z

�
duTuu � 0

u, v = t± xNull coordinates

� = null ray

Some background:  
80's and 90's

• ANEC is sufficient for many of the GR theorems
e.g. [Borde ’87]

• Derived in various free theories by explicit calculation of Tµ⌫

[Klinkhammer ’91; Wald, Yurtsever 
’91; Folacci ’92; Ford, Roman ’95]



[Hofman and Maldacena '08]

Evaluate the ANEC in a state created by the stress tensor itself,

Constrains the OPE coefficients CTTT

2000's: Conformal Collider Bounds

Holographic dual: 

[Hofman '09]

S =

Z
p
g
�
R� 2⇤+ ↵R2 + · · ·

�

Einstein gravity has a=c; 

[Brigante, Liu, Myers, 

Shenker, Yaida '07]

4d :
1

3
 a

c
 31

18

so this constrains higher curvature couplings


Same constraints follow from bulk causality

hT (p)|
Z

duTuu|T (p)i � 0



Or an extra constraint we should impose?

Answer: The ANEC is a consequence of unitarity.

But is the ANEC true in interacting QFTs?

Recently, three derivations in interacting QFT in d > 2 :

•      Holographic

•      Relative entropy

•      Causality of correlation functions

[postpone…]



ANEC from Causality

G = h (x3)O(x1)O(x2) (x4)i

Consider a 4-point correlation function

[TH, Jain, Kundu ’15, ’16]

[Komargodski, Kulaxizi, Parnachev, Zhiboedov ’16]

[Hofman, Li, Meltzer, Poland, Rejon-Barrera '16]

Unitarity + Causality + Boostrap methods 

Conformal collider bounds

and the full ANEC

[TH, Kundu, Tajdini '16]



(1) OPE in the lightcone limit gives

OO ⇠ 1 +

Z 1

�1
duTuu

This relates the ANEC to properties of 4-point functions,

G ⇠ 1 + h |
Z 1

�1
duTuu| i

Ingredients:

[O(x1),O(x2)] = 0 (spacelike)

tells us the domain where G is analytic.

(2) Causality:

I
G = 0



This leads to a sum rule for the integrated null energy:

(3) The "double discontinuity" on the right is positive by unitarity.

h |

Z 1

�1
duTuu| i =

Z
h[ ,O][ ,O]i

� 0

compare: Lorentzian OPE inversion formula [Caron-Huot '17]

[TH, Kundu, Tajdini '16]

This implies the ANEC.



ANEC from Holography [Kelly, Wall '14]

boun
dary

pa
rti
cle

The particle stays at fixed z 
close to the AdS boundary.


Time delay:

�v ⇠
Z 1

�1
duhuu

⇠
Z 1

�1
duhTuui

� 0



This proves the ANEC in holographic CFTs (large N, etc.)

But clearly the logic is very similar to the general CFT argument, which 
did not require large N.


Both use causality in the lightcone limit



Applications and Extensions of the ANEC



1)   The Higher Spin ANEC

Applications and Extensions of the ANEC

Positive sum rule for integrated higher spin operators (J even)

h |

Z 1

�1
Xuuuu···| i =

Z
dz zJ�2

h[ ,O][ ,O]i

� 0

Confirmed by numerical bootstrap in 3d Ising for J  40
[Simmons-Duffin '16]

[TH, Kundu, Tajdini ’16] 

see also: 

[Komargodski, Kulaxizi, Parnachev, Zhiboedov ’16]

This is an experimental prediction for systems in the lab— e.g. 3d 
Ising or the O(2) model



2)   The Continuous Spin ANEC

Applications and Extensions of the ANEC

What if J is not an integer?

h | ? | i =

Z
dz|z|J�2

h[ ,O][ ,O]i

[Kravchuk, Simmons-Duffin '18]

The right-hand side is still positive.
But does this correspond to some positive operator on the left?

These operators naturally appear in the OPE data upon analytic 
continuation in spin, and control high-energy (Regge) scattering.

Yes: a nonlocal "light ray operator" with non-integer spin
Z

dudu0X(u, u0)



3)   Interference in the Conformal Collider

Applications and Extensions of the ANEC

Evaluate the ANEC in superpositions

[Cordova, Maldacena, Turiaci '17]

| i = ↵T (p)|0i+ �O(p)|0i

✓
cTTT cTTO

cTTO cOTO

◆
� 0

X

i

fi|cTTOi |2  cTTT

Constrains the off-diagonal (TTO) couplings by the diagonal (TTT, OTO) 
couplings:

Eigenvalue repulsion makes the ANEC stronger



4)   Bounds on Transport

Applications and Extensions of the ANEC

[Delacrétaz, TH, Hartnoll, Lewkowycz ’18]

0

BB@

1

CCA

Apply ANEC to all states in the microcanoncal ensemble at energy E

hi|
Z

duTuu|ji ⇠ � 0diagonal: 
equilibrium thermodynamics 

off-diagonal: 
hydrodynamic 
fluctuations



Applications and Extensions of the ANEC

Constraints on transport coefficients vs. thermalization length

[Delacrétaz, TH, 
Hartnoll, Lewkowycz 
’18]

Upper bounds on transport coefficients also imposed by causality of 
hydrodynamic 2-point functions.

These also have been derived rigorously

in non-relativistic QM.

[Baier, Romatschke, Son, 
Starinets, Stephanov ’07]

[Romatschke ’09]

[TH, Hartnoll, Mahajan ’17]

[Han, Hartnoll ’18]

Other (non-ANEC) bounds

⇤hydro . f

✓
⌘

s
,
⇣

s
, csound, · · ·

◆

Quark-gluon plasma?



5)   New Unitarity Bounds in 4d

Applications and Extensions of the ANEC

[Cordova, Diab '17]

For              Lorentz reps, the ANEC gives

6)   Parity-violating OPE coefficients [Chowdhury, David, Prakash '17]

3d : hTTT i, hJJT i

Saturated by large-N Chern-Simons-Matter theories

(k, k̄)

� � max(k, k̄)

~2x stronger for chiral reps!

(partly conjecture)



Outline

I. The ANEC


II. Holographic CFTs


III. Energy vs. entropy

The goal is to show that energy conditions become much 
stronger in large-N, holographic theories, and that this can help 
us understand the emergence of gravity in these theories.



First some comments on the chaos bound:

sign constraint
maximal Lyapunov �  2⇡

�

[Maldacena, Shenker, Stanford '15]

The chaos bound constrains thermal 4-point functions (OTOCs),

This also constrains vacuum correlators, because they can be viewed 
thermal correlators in Rindler

G ⇠ h (0)O(t) (0)O(t)i�

⇠ 1�
1

N
e�t + · · ·



Regge

(Large N)

Chaos

Dominated by high-spin

exchanges

Lightcone 

ANEC

Dominated by low-twist

exchanges
OPE in any CFT

[Brower, Polchinski, Strassler, Tan ’06]

[Cornalba ’07]

[Cornalba, Costa, Penedones ’08]

[Costa, Goncalves, Penedones ’12]



Two limits in the bulk of AdS:

Lightcone limit Regge limit

We will now venture into the Regge regime. This requires large-N.


The goal is to derive aspects of local physics in AdS, directly from CFT.



Can we derive gravity in AdS directly from CFT?

In 2d, often “yes” using Virasoro. But in higher dimensions?

At low energies, we expect roughly

Large #d.o.f.    +   Large gap   —>    emergent gravity

specific conjecture in: 

[Heemskerk, Polchinski, Penedones, Sully ]

But what exactly do you need to show?

(Set d=4).



S =
1

GN

Z ⇣
�2⇤+R+

c2
M2

R2 + · · ·
⌘

c2 ⇠ O(1)With M = string mass and 
e.g. 5d Gauss-Bonnet

[Camanho, Edelstein, Maldacena, Zhiboedov ’14]

Any theory of quantum gravity looks like Einstein gravity at low 
energies,

To "derive AdS gravity from CFT" means to show that 
all consistent CFTs (in some class) correspond to bulk 
theories with higher derivative terms suppressed by 
the string scale.

This suppression is the hallmark of a local bulk.



A big piece of this was proved by bootstrap in:

Lagrangians in AdS Solutions of CFT crossing equation 

order by order in 1/N

But this leaves unanswered:


Why Einstein gravity in the bulk?

[Heemskerk, Polchinski, Penedones, Sully ’09]

[Penedones ’10]

[Fitpatrick, Kaplan, Penedones, Raju, van Rees ’11]

etc.

Ultimately non-perturbative; but for now, correlators in vacuum



The simplest version of this question is for 3-point functions:

In a general CFT, there are 3 free coefficients:

hTTT icft = ahTTT i1 + chTTT i2 + t4hTTT i3

a = c and t4 = 0hTTT i =

But Einstein gravity is very special:

Why does some class of CFTs have universal <TTT> correlators?



Similar questions apply to matter couplings:

hTTOiWhy is                  universal?

hTTOi ⇠ 0

Bulk:

S ⇠ · · ·+
Z

p
g�C2

µ⌫↵�

So effective field theory in the bulk predicts

Or more accurately,

hTTOi ⇠
1

�#
gap



These universal 3-point functions have now been derived from CFT.

The basic idea:

Unitarity + Causality + Bootstrap methods 

ANEC in the lightcone limit [first part of talk]

universality of spinning 3-point functions in the Regge limit
(in large-N theories with a gap)

[Afkhami-Jeddi, TH, Kundu, Tajdini ’16, ’17]

[Li, Meltzer, Poland ’17]

[Kulaxizi, Parnachev, Zhiboedov ’17]

[Costa, Hansen, Penedones ’17]

[Meltzer, Perlmutter ’17]

[Afkhami-Jeddi, Kundu, Tajdini ’18]

These papers use several different methods, looking at different parts of 
the amplitude. 



This stronger condition interpolates from the Hofman-Maldacena 
constraints

1

3
 a

c
 31

18

to the Einstein gravity result,

1  a

c
 1 i.e. a = c

Universality of <TTT>  and  <TTO>

(Several constraints from different polarizations.)

Conclusion: The ANEC gets replaced by a stronger condition in 
holographic CFTs.



Outline

I. The ANEC


II. Holographic CFTs


III. Energy vs. entropy



Bekenstein Bound

Reformulated as relative entropy:

Measures distinguishability from vacuum. 

[Bekenstein ’81]

[Marolf, Minic, Ross ’03]

[Marolf ’04]

[Casini ’08]

S  2⇡RE

Srel(⇢|⇢vacuum) = �hHi ��S � 0

Relative entropy decreases under deformations that “shrink” the region

A

Monotonicity

“‘harder to distinguish”

d

d�
Srel  0



Consider a null deformation 
of Rindler half-space:

A

For this deformation, monotonicity gives the “half-ANEC”:

Adding the same formula for the complement region gives the regular 
ANEC. (Entanglement terms cancel.)

[Faulkner, Leigh, Parrikar, Wang ’16]

� d

d�
Srel =

Z 1

0
duTuu +

1

2⇡
S0
A � 0

see also: [Wall ’10], [Blanco, Casini ’13]



A surprise: In QFT, there is a stronger condition,

d2

d�2
Srel � 0

Since                       at infinity, this implies monotonicityd

d�
Srel ! 0

This parallels the derivation of the second law of black hole 
thermodynamics:

focusing ) Area00  0 ) Area0 � 0

[Bousso, Fisher, Leichenauer, Wall ’15]

[Bousso, Fisher, Leichenauer, Koeller, Wall ’15]

[Balakrishnan, Faulkner, Khandker, Wang ’17]

Relative entropy is positive and monotonic in any quantum system.



The local term is a new local energy condition:

hTuui �
1

2⇡
S00
A

The QNEC: Quantum Null Energy Condition

[Bousso, Fisher, Leichenauer, Wall ’15]


Recall the theorem: “no local positive energy in QFT”


This evades the theorem because the r.h.s. is not an operator.

The 2nd derivative has local and non-local terms along the horizon.

The non-local terms are positive by strong subadditivity.



Status of the QNEC

• Motivated by coupling to gravity and asking for a quantum 
analogue of the focusing equation; the QNEC survives as 
Newton’s constant —> 0

[Bousso, Fisher, Leichenauer, Wall ’15]

• Derived in free QFT
[Bousso, Fisher, Leichenauer, Koeller, Wall ’15]

• Derived in holographic theories from a local causality condition

(cf. ANEC and a=c from boundary causality)

[Koeller, Leichenauer ’15]

• Derived in interacting QFT 
[Balakrishnan, Faulkner, Khandker, Wang ’17]

• Found to be saturated in interacting theories!

hTuui =
1

2⇡
S00
A

[Ecker, Grumiller, van der Schee, 
Stanzer ’17]

[Leichenauer, Levine, Shahbazi-
Moghaddam ’18]

[Khandker, Kundu, Li ’18]

[Balakrishnan et al, work in progress]



Integrating gives the ANEC,

If the QNEC is saturated, the integrand comes entirely from the nonlocal 
terms. Therefore

Strong subadditivity

of a “skinny” region ANEC

[Leichenauer, Levine, Shahbazi-Moghaddam ’18]

QNEC vs ANEC

=

Z 1

�1
d� (SSA+QNEC)

Z 1

�1
duTuu =

Z 1

�1
d�

d2Srel

d�2

And the proof of the QNEC by [Balakrishnan, Faulkner, Khandker, Wang] 
becomes a field-theoretic proof of SSA.



Conclusions

• ANEC        <— Causality in lightcone limit


• Universal 3-point functions @ large N      <— Causality in Regge limit


• QNEC       <— Local causality in the bulk

These are fundamental properties of QFT.


But each was first discovered by coupling the QFT to gravity, or from 
holography.

Bootstrap

Holography

Quantum  
information


