Quantum Entanglement in Holography Xi Dong UCSB

Review talk Strings 2018, OIST, Okinawa, Japan June 27, 2018

Quantum entanglement

- Correlation between parts of the full system
- Simplest example: $|\Psi\rangle = |\uparrow\rangle|\downarrow\rangle |\downarrow\rangle|\uparrow\rangle$

Quantum entanglement

General case:

Entanglement is complicated

- Entanglement is not just entanglement entropy.
- "Structure" of (many-body) quantum state.
- Entanglement entropy is one of many probes.
- Other probes: correlators, Renyi entropy, modular Hamiltonian/flow, complexity, quantum error correction, ...

Entanglement is complicated

- Structure of entanglement is increasingly important in the study of many-body physics.
- String theory and quantum field theory are (special) many-body systems.
- Strategy: study patterns of entanglement to address interesting questions such as:

> How does quantum gravity work?

> How do we describe the black hole interior?

> How do we describe cosmology?

Plan

- Entanglement in QFT
- Entanglement in holography
- Applications and generalizations
- Holographic error correction

- Von Neumann entropy: $S \stackrel{\text{def}}{=} -\text{Tr}(\rho_A \ln \rho_A)$
- Renyi entropy: $S_n \stackrel{\text{def}}{=} \frac{1}{1-n} \ln \operatorname{Tr} \rho_A^n$
- Interesting in QFT and holography

Entanglement entropy in QFT

- Area-law divergence: $S = \# \frac{\text{Area}}{\epsilon^{d-2}} + \dots + S_{univ} + \dots$
- Even $d: S_{univ} = (\sum_i c_i I_i) \ln \epsilon$
- ≻E.g. CFT₄: $S_{univ} = (\int aR + aK^2 + cW) \ln \epsilon$
- Odd $d: S_{univ}$ is finite and nonlocal.

 \succ E.g. spherical disk: $S_{univ} \sim F$

- Can generalize to Renyi entropy
- Can generalize to cases with corners

[Allais, Balakrishnan, Banerjee, Bhattacharya, Bianchi, Bueno, Carmi, Chapman, Czech, XD, Dowker, Dutta, Elvang, Faulkner, Fonda, Galante, Hadjiantonis, Hubeny, Klebanov, Lamprou, Lee, Leigh, Lewkowycz, McCandish, McGough, Meineri, Mezei, Miao, Myers, Nishioka, Nozaki, Numasawa, Parrikar, Perlmutter, Prudenziai, Pufu, Rangamani, Rosenhaus, Safdi, Seminara, Smolkin, Solodukhin, Sully, Takayanagi, Tonni, Witczak-Krempa, ...]

Strong subadditivity (SSA)

$S_{AB} + S_{BC} \ge S_{ABC} + S_A$

- In Lorentz-invariant QFT, leads to:
- Monotonic C-function in 2d and F-function in 3d
- ≻A-theorem in 4d
- Basic idea in 2d:

- A particular 2^{nd} derivative of S(l) is non-positive.
- Define $C(l) = 3l S'(l) \implies C'(l) \le 0$

[Casini, Huerta, Teste, Torroba]

 $K \stackrel{\text{\tiny def}}{=} -\ln \rho$

- Makes the state look thermal
- Nonlocal in general
- Exceptions:
- 1. Thermal state $\rho = e^{-\beta H}/Z$
- 2. Half space in QFT vacuum:

$$K\sim 2\pi\int z\,T^{00}$$

[Bisognano, Wichmann]

3. Spherical disk in CFT vacuum

$$K \sim 2\pi \int \frac{R^2 - r^2}{R} T^{00}$$

• Generalizes to wiggly cases

[Casini, Huerta, Myers, Teste, Torroba]

 \mathcal{D}

• Shape deformation governed by $T_{\mu\nu}$, leading to:

Averaged Null Energy Condition (ANEC): $\int dx^+ \langle T_{++} \rangle \ge 0$

- Uses monotonicity of relative entropy (⇔ SSA)
- Relative entropy $S(\rho | \sigma) \stackrel{\text{\tiny def}}{=} \operatorname{Tr}(\rho \ln \rho) \operatorname{Tr}(\rho \ln \sigma)$
- $S(\rho|\sigma) \ge 0$; $S(\rho|\sigma) = 0$ iff $\rho = \sigma$
- A measure of distinguishability
- Monotonicity: $S(\rho_{AB} | \sigma_{AB}) \ge S(\rho_A | \sigma_A)$

[Faulkner, Leigh, Parrikar, Wang; Hartman, Kundu, Tajdini; Bousso, Fisher, Leichenauer, Wall; Balakrishnan, Faulkner, Khandker, Wang]

- Shape deformation governed by $T_{\mu\nu}$, leading to:
- ► Quantum Null Energy Condition (QNEC): $\langle T_{++} \rangle \ge \frac{1}{2\pi} S''$
- Uses causality (in modular time)

[Faulkner, Leigh, Parrikar, Wang; Hartman, Kundu, Tajdini; Bousso, Fisher, Leichenauer, Wall; Balakrishnan, Faulkner, Khandker, Wang]

Plan

- Entanglement in QFT
- Entanglement in holography
- Applications and generalizations
- Holographic error correction

Holographic Entanglement Entropy

In holography, von Neumann entropy is given by the area of a dual surface: [Ryu & Takayanagi '06]

φ(x)_

_φ(y)

Area

 $S = \min \{$

• Practically useful for understanding entanglement in strongly-coupled systems.

[Huijse, Sachdev & Swingle '11] [XD, Harrison, Kachru, Torroba & Wang '12; ...]

• Conceptually important for understanding the emergence of spacetime from entanglement.

[Van Raamsdonk '10; Maldacena & Susskind '13; ...]

Proof from AdS/CFT

Basic idea:

- Use replica trick to calculate Renyi entropy S_n .
- Given by the action of a bulk solution B_n with a conical defect.
- Von Neumann entropy: $S = \partial_n I[B_n]|_{n=1}$.
- The RT minimal surface is a relic of the conical defect as deficit angle $2\pi \left(1 \frac{1}{n}\right)$ goes to zero.
- Variation of on-shell action is a boundary term, giving the area.

HRT in time-dependent states

- Strictly speaking, the RT formula applies at a moment of time-reflection symmetry.
- For time-dependent states, we have a covariant generalization (HRT): [Hubeny, Rangamani & Takayanagi '07]

$$S = \operatorname{ext} \frac{\operatorname{Area}}{4G_N}$$

- Powerful tool for studying time-dependent physics such as quantum quenches.
- Can also be derived from AdS/CFT. [XD, Lewkowycz & Rangamani '16]

Corrections to RT formula

The RT formula has been refined by:

- Higher derivative corrections
- Quantum corrections

Higher derivative corrections to RT

• Higher derivative corrections (α'):

$$S = \operatorname{ext} \frac{A_{\operatorname{gen}}}{4G_N}$$

[XD '13; Camps '13; XD & Lewkowycz, 1705.08453; ...]

- "Generalized area" $A_{\text{gen}} = \partial_n I[B_n]|_{n=1}$
- Has the form: $S_{Wald} + S_{extrinsic curvature}$
- Example:

$$L = -\frac{1}{16\pi G_N} \left(R + \lambda R_{\mu\nu} R^{\mu\nu} \right) \xrightarrow{\text{yields}} A_{\text{gen}} = \int_X 1 + \lambda \left(R_a^a - \frac{1}{2} K_a K^a \right)$$

• Applies to (dynamical) black holes and shown to obey the Second Law.

[Bhattacharjee, Sarkar & Wall '15; Wall '15]

Quantum corrections to RT

These corrections ($G_N \sim 1/N^2$) come from matter fields and gravitons.

• The prescription is surprisingly simple:

$$S = \operatorname{ext}\left(\frac{\langle A \rangle}{4G_N} + S_{\operatorname{bulk}}\right)$$

[Engelhardt & Wall '14; XD & Lewkowycz,

1705.08453]

- Quantum extremal surface.
- Valid to all orders in G_N .
- Natural: invariant under bulk RG flow.
- Matches one-loop FLM result. [Faulkner, Lewkowycz & Maldacena '13]
- S_{bulk} defined in entanglement wedge (domain of dependence of achronal surface between A and γ_A)

Quantum corrections to RT

These corrections ($G_N \sim 1/N^2$) come from matter fields and gravitons.

• The prescription is surprisingly simple:

$$S = \operatorname{ext}\left(\frac{\langle A \rangle}{4G_N} + S_{\operatorname{bulk}}\right)$$

- Can be derived from AdS/CFT. [XD & Lewkowycz 1705.08453]
- Example: 2d dilaton gravity with N_f matter fields. [CGHS; Russo, Susskind & Thorlacius '92]

➢Quantum effects generate nonlocal effective action:

$$L = -\frac{1}{2\pi} \left[e^{-2\phi} (R + 4\lambda^2) + \frac{N_f}{96\pi} R \frac{1}{\nabla^2} R \right]$$

Appears local in conformal gauge. Can check quantum extremality.

Holographic Renyi entropy

$$S_n \stackrel{\text{\tiny def}}{=} \frac{1}{1-n} \ln \operatorname{Tr} \rho_A^n$$

• Given by cosmic branes instead of minimal surface

$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\operatorname{Area}(\operatorname{Cosmic} \operatorname{Brane}_n)}{4G_N}$$

 $n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\operatorname{Area}(\operatorname{Cosmic} \operatorname{Brane}_n)}{4G_N}$

• Cosmic brane similar to minimal surface; they are both codimension-2 and anchored at edge of A.

 C_n

- But brane is different in having tension $T_n = \frac{n-1}{4nGN}$.
- Backreacts on ambient geometry by creating conical deficit angle $2\pi \frac{n-1}{n}$.
- Useful way of getting the geometry: find solution to classical action $I_{total} = I_{bulk} + I_{brane}$.
- As $n \rightarrow 1$: probe brane settles at minimal surface.
- One-parameter generation of RT.

$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\operatorname{Area}(\operatorname{Cosmic} \operatorname{Brane}_n)}{4G_N}$

- Why does this area law work?
- Because LHS is a more natural candidate for generalizing von Neumann entropy:

$$\widetilde{S_n} \stackrel{\text{\tiny def}}{=} n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = -n^2 \partial_n \left(\frac{1}{n} \ln \operatorname{Tr} \rho_A^n \right)$$

• This is standard thermodynamic relation

$$\widetilde{S_n} = -\frac{\partial F_n}{\partial T} \qquad \text{with } F_n = -\frac{1}{n} \ln \operatorname{Tr} \rho_A^n, \quad T = \frac{1}{n}$$

Tr ρ_A^n is partition function w/ modular Hamiltonian $-\ln \rho_A$ • $\widetilde{S_n} \ge 0$ generally. [Beck & Schögl '93] Automatic by area law!

• CFT modular flow = bulk modular flow

$$S(\rho|\sigma) = S_{\text{bulk}}(\rho|\sigma)$$

- Two states are as distinguishable in the CFT as in the bulk.
- Both relations hold to one-loop order in 1/N.

Plan

- Entanglement in QFT
- Entanglement in holography
- Applications and generalizations
- Holographic error correction

Phases of holographic entanglement entropy

 L_2

• First-order phase transition

 L_1

- Similar to Hawking-Page transition
- Mutual information $I(A, B) \stackrel{\text{def}}{=} S_A + S_B S_{AB}$ changes from zero to nonzero (at order $1/G_N$).
- Holographic Renyi entropy has similar transitions.

 L_1

 L_2

Phases of holographic Renyi entropy

- Can have second-order phase transition at $n = n_{crit}$
- Need a sufficiently light bulk field
- Basic idea: increase n ~ decrease T ⇒ bulk field condenses.
- Examples:
- 1. Spherical disk region
- 2. In d = 2: multiple intervals

- Holographic Entropy Cone
- RT satisfies strong subadditivity:

[Headrick & Takayanagi]

 $\implies S_{A\cup B} + S_{B\cup C} \ge S_{A\cup B\cup C} + S_B$

 Also satisfies other inequalities such as monogamy of mutual information

$$S_{AB} + S_{BC} + S_{CA} \ge S_{ABC} + S_A + S_B + S_C$$

[Hayden, Headrick & Maloney]

and

 $S_{ABC} + S_{BCD} + S_{CDE} + S_{DEA} + S_{EAB}$ $\geq S_{ABCDE} + S_{AB} + S_{BC} + S_{CD} + S_{DE} + S_{EA}$

[Bao, Nezami, Ooguri, Stoica, Sully & Walter]

- Provide nontrivial conditions for a theory to have a gravity dual.
- Holographic entropy cone for time-dependent states?
- AdS₃/CFT₂: same as the static case.

[XD & Czech, to appear]

Time evolution of entanglement

• Consider the thermofield double (TFD) state:

$$|\Psi\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{\beta E_n/2} |n\rangle_L |n\rangle_R$$

• Dual to eternal AdS black hole:

[Maldacena]

Time evolution of entanglement

 Consider the union of half of the left CFT and half of the right CFT at time t:

- Its entanglement entropy grows linearly in t.
- Related to the growth of the BH interior.

[Hartman, Maldacena]

Holographic complexity

- Such growth of the BH interior is conjectured to correspond to the linear growth of complexity of the state.
- Complexity: minimum # of gates to prepare a state
- ➤Complexity = Volume

➤Complexity = Action

[Stanford, Susskind; Brown, Roberts, Susskind, Swingle, Zhao]

Traversable wormhole

- TFD is a highly entangled state, but the two CFTs do not interact with each other.
- Dual to a non-traversable wormhole.

- Can be made traversable by adding interactions.
- Quantum teleportation protocol.

[Gao, Jafferis, Wall; Maldacena, Stanford, Yang; Maldacena, Qi]

Einstein equations from entanglement

- The proof of RT relied on Einstein equations.
- Can go in the other direction: deriving Einstein equations from RT.
- Basic idea: first law of entanglement entropy

 $\delta S = \delta \langle K_{\rho} \rangle$ under $\rho \rightarrow \rho + \delta \rho$

- Apply to a spherical disk in the CFT vacuum, so that K_{ρ} is locally determined from the CFT stress tensor.
- Both sides are controlled by the bulk metric: via RT on the left, and via extrapolate dictionary on the right.
- Gives the (linearized) Einstein equations.

[XD, Faulkner, Guica, Haehl, Hartman, Hijano, Lashkari, Lewkowycz, McDermott, Myers, Parrikar, Rabideau, Swingle, VanRaamsdonk, ...]

Bit threads

• Reformulate RT using maximal flows instead of minimal surfaces.

- Flow: $\nabla \cdot v = 0$, $|v| \leq C$
- Max flow-min cut theorem:

$$\max_{v} \int_{A} v = C \min_{m \sim A} \operatorname{Area}(m)$$

[Freedman, Headrick; Headrick, Hubeny]

Bit threads

 One advantage is that max flows change continuously across phase transitions, unlike min cuts:

• This bit thread picture has been generalized to HRT.

[Freedman, Headrick; Headrick, Hubeny]

Entanglement of purification

- Given a mixed state ρ_{AB} , it may be purified as $|\psi\rangle_{AA'BB'}$.
- Entanglement of purification: $\min_{\mu} S(\rho_{AA'})$
- Conjectured to be holographically given by the entanglement wedge cross section Σ_{AB}^{\min} :

Modular flow as a disentangler

- "Modular minimal entropy" is given by the area of a constrained extremal surface.
- Given two regions *R*, *A*, define the modular evolved state: $|\psi(s)\rangle = \rho_R^{is} |\psi\rangle$
- And the modular minimal entropy: $\overline{S_R}(A) = \min_{s} S_A(|\psi(s)\rangle)$
- Holographically given by a constrained extremal surface (i.e. extremal except at intersections with the HRT surface γ_R of R).

Modular flow as a disentangler

- "Modular minimal entropy" is given by the area of a constrained extremal surface.
- Obvious when the modular flow is local:

- Seems to be generally true (can be proven in d=2).
- A useful diagnostic of whether γ_A and γ_R intersect.

[Chen, XD, Lewkowycz & Qi, appearing today]

Entanglement in de Sitter holography

• dS/dS correspondence:

$$ds_{dS_{d+1}}^{2} = dw^{2} + \sin^{2}(w) \, ds_{dS_{d}}^{2}$$

- Suggests a dual description as two matter sectors coupled to each other and to *d*-dimensional gravity.
- Reminiscent of (but different from) the TFD example discussed previously.
- In particular, the two sides are in a maximally entangled state (to leading order), as shown by entanglement and Renyi entropies.
- Matches and gives an interpretation of the Gibbons-Hawking entropy, Torroba]

Plan

- Entanglement in QFT
- Entanglement in holography
- Applications and generalizations
- Holographic error correction

Why quantum error correction?

- $\phi(x)$ can be represented on $A \cup B$, $B \cup C$, or $A \cup C$.
- Obviously they cannot be the same CFT operator.
- Defining feature for quantum error correction.
- Holography is a quantum error correcting code.
- Reconstruction works in a code subspace of states.

AdS/CFT as a Quantum Error Correcting Code

Bulk Gravity

- Low-energy bulk states
- Different CFT representations of a bulk operator
- Algebra of bulk operators

Quantum Error Correction

- States in the code subspace
- Redundant implementation of the same logical operation
- Algebra of protected operators acting on the code subspace

Radial distance

Level of protection

[Almheiri, XD, Harlow]

Tensor network toy models

[Pastawski, Yoshida, Harlow & Preskill '15; Hayden, Nezami, Qi, Thomas, Walter & Yang '16; Donnelly, Michel, Marolf & Wien '16; ...] Entanglement wedge reconstruction

 \overline{a}

 \boldsymbol{a}

In other words:

 $\forall O_a \text{ in the entanglement wedge of } A, \exists O_A \text{ on } A, \text{ s.t. } O_A |\phi\rangle = O_a |\phi\rangle \text{ and } O_A^{\dagger} |\phi\rangle = O_a^{\dagger} |\phi\rangle \text{ hold for } \forall |\phi\rangle \in H_{code}.$

Entanglement wedge reconstruction

Any bulk operator in the entanglement wedge of region *A* may be represented as a CFT operator on *A*.

 \overline{a}

 \boldsymbol{a}

This new form of subregion duality goes beyond the old "causal wedge reconstruction": entanglement wedge can reach behind black hole horizons.

Valid to all orders in G_N .

Reconstruction theorem

- Goal is to prove: $\langle \phi | [O_a, X_{\bar{A}}] | \phi \rangle = 0$
- This is necessary and sufficient for $\exists O_A, s.t. O_A |\phi\rangle = O_a |\phi\rangle$ and $O_A^{\dagger} |\phi\rangle = O_a^{\dagger} |\phi\rangle$
- WLG assume O_a is Hermitian.

[Almheiri, XD & Harlow '14]

• Consider two states $|\phi\rangle$, $e^{i\lambda O_a}|\phi\rangle$ in code subspace H_c :

RT from QEC

- We saw that entanglement wedge reconstruction arises from JLMS which is in turn a result of the quantum-corrected RT formula.
- Can go in the other direction.
- In any quantum error-correcting code with complementary recovery, we have a version of the RT formula with one-loop quantum corrections:

$$S_A = \langle A \rangle + S_a$$

Conclusion and Questions

- Patterns of entanglement provide a unconventional window towards understanding QFT and gravity.
- Can we generalize the entanglement-based proof of c-, F-, and a-theorems to higher dimensions?
- We discussed α' corrections to the RT formula.

 \succ Is there a stringy derivation that works for finite α' ?

• We saw that RT with one-loop quantum corrections matches QEC with complementary recovery.

Do higher-order corrections mean something in QEC?

- > What conditions for a code to have a gravity dual?
- How do we fully enjoy all of this in the context of black hole information problem and cosmology?

Thank you!