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Learn from solvable examples...?
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Quantum spectral curve
[Gromov, Kazakov, Leurent, Volin 2013]



Planar higher-pt functions
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For simplicity, | will focus on the correlation functions of
2 BPS operators.

O; = Tr [(Y; - ®)%]

Y; : Null 6-component vector Y; - Y; =0

although many things can be generalized to non-BPS operators.



3pt = a pair of pants

N=4 SYM at zero coupling A = 0

[Alday et al], [Okuyama, Tseng.], [Roiban, Volovich]
[Escobedo et al.] and many others

b2




3pt = a pair of pants

N=4 SYM at zero coupling A = 0

[Alday et al], [Okuyama, Tseng.], [Roiban, Volovich]
[Escobedo et al.] and many others

Bridge length

U1 U3 =

Planar surface for 3pt functions

Oy

or equivalently




3pt = a pair of pants

Planar surface for 3pt functions

Oy

or equivalently

« To use integrability, one has to consider integrable models on
a pair of pants.

 Never studied before in the literature.
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/
[Basso, SK, Vieira 2015] / \ / \

~

triangulation of the worldsheet



3pt = (Hexagon)?
()

Insert a complete basis

(==

Insert a complete basis of states
on the dashed lines.

<01(92(93> =

/ \\5\ v /‘/ \\\
measure propagatlon
factor
« Similar to sewing construction of 2d CFT. 0, =203
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* The computation of 3pt boils down to the computation of “hexagons”.
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The result beautifully reproduces the perturbative computation

(checked up to four loops and partially at strong coupling) [Jiang, Kostov, Serban, SK], [Eden, Sfondrini]
[Basso, Goncalves, Vieira SK], [Basso, Goncalves, SK]
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Generalization to higher pt

All these can be generalized to higher point functions.

1) List up all possible
planar graphs.

2) Compute contributions
from each graph.
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Generalization to higher pt

All these can be generalized to higher point functions.

Idea: Insert a complete basis and
cut it into hexagons. 7T~
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Generalization to higher pt

All these can be generalized to higher point functions.
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Weight factor W(z,z) (purely kinematical)

Reproduces the perturbative computation (1-loop four pt, 1-loop five pt,

h|g her |00ps in Specia| kinematics) [Fleury, SK 2016, 2017], [Fleury, Goncalves, SK in progress]
See also [Eden, Sfondrini 2016]



Can we generalize this to
nonplanar surfaces?
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Decomposing the surface with hexagons

First guess [Bargheer, Caetano, Fleury, Vieira, SK] also [Eden, Jiang, Sfondrini]

Cut the surface into planar
hexagons, insert a complete basis,
and sum over the graph.

8 hexagons, complicated...
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Simplification for large-length operators

Combinatorial enhancement:
When the operators are very long,
L >1

the maximally connected graphs will be combinatorially dominant.

L+n
# of ways to split L propagators to n groups = ( :; ) ~ L"

Dynamical suppression:
If all &-j are large, the contributions are exponentially suppressed.

e~ Blii « 1



Simplification for large-length operators

Submaximal graphs, obtained from the maximal graphs by erasing a few
connections, will dominate!
(Locally look the same as planar four-point function.)

1

c

:)\[...}F(l) + )2 ([---}F@) 4+ [...](F(l))2> match!

L>1
1)3 ({...]F<3>+ [ F@pO 4 [...](F<1>)3>

prediction




Finite L's
At O()\), we can also try to study the correlators of finite-length operators.

Puzzle:

« Qur basic strategy : Start from tree-level graphs, cut it into hexagons
and dress them with magnons.

 Should we include

[ |
* Not at tree level. But we cannot simply throw it away since this can
iInclude genuine nonplanar contributions (when dressed with magnons).



Resolution: Use the analogy between the sum over graphs
and the moduli space of Riemann surface.



“Stratification”

« The graphs that are secretly planar are the analogues of the
degenerate Riemann surfaces.

i) )~ @ =

6-pt with 2 “holes”.

« They correspond to the boundaries of the torus moduli space.
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- Correctly reproduces the finite L answers at O()\)



Summary and outlook
Summary:

* One can use integrability to study non-planar gquantities.
« Sum over graphs, cut them into planar hexagons.

e FinteL — “Stratification”.

Outlook:

« Better understand the relation between the graphs and the

moduli space, and the stratification. cf. [copakumar 2003] [Razamat 2008]
[Gopakumar, Pius 2012]

e Try to resum 1/N series in some kinematics?
Cf. [Gross Mende] [Mende Ooguri]

* Find ways to efficiently resum magnons. Quantum spectral
curve?



