Nonplanar Correlators in N=4 SYM From Integrability

Shota Komatsu

IAS

Strings 2018

1711.05326 [Bargheer, Caetano, Fleury, Vieira, SK] +1807.xxxxxx [Bargheer, Caetano, Fleury, Vieira, SK]

$\begin{bmatrix} AdS = CFT \end{bmatrix}$

- Deep insights into quantum gravity & interacting QFT.
- Still many things to be understood.

- Deep insights into quantum gravity & interacting QFT.
- Still many things to be understood.
- (One of) the key missing link(s):
 Definition of quantum gravity/string theory in AdS.
 Even the perturbative (calculable) definition is missing in most cases.

- Deep insights into quantum gravity & interacting QFT.
- Still many things to be understood.
- (One of) the key missing link(s): Definition of quantum gravity/string theory in AdS. Even the perturbative (calculable) definition is missing in most cases.

• Almost no checks for 1/N corrections (= loops in AdS).

- Deep insights into quantum gravity & interacting QFT.
- Still many things to be understood.
- (One of) the key missing link(s): Definition of quantum gravity/string theory in AdS. Even the perturbative (calculable) definition is missing in most cases.

• Almost no checks for 1/N corrections (= loops in AdS).

• Learn from solvable examples...?

• Solvable at large N using integrability

2-pt:
$$\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{1}{|x_{12}|^{2\Delta}}$$

• Solvable at large N using integrability

2-pt:
$$\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{1}{|x_{12}|^{2\Delta}}$$

N=4 SYM

Map between "single-trace operators" and spin chains. [Minahan, Zarembo 2002]

 $\mathcal{O} \sim \mathrm{Tr} \dots ZYZ \dots ZYZ \dots$ $= \bigwedge^{\uparrow \uparrow \uparrow \uparrow \uparrow} \bigwedge^{\uparrow \uparrow \uparrow \uparrow} \bigwedge^{\uparrow \uparrow \uparrow}$

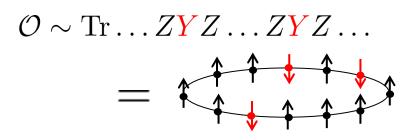
Spin chain turns out to be integrable

• Solvable at large N using integrability

2-pt:
$$\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{1}{|x_{12}|^{2\Delta}}$$

N=4 SYM

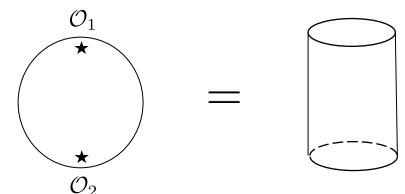
Map between "single-trace operators" and spin chains. [Minahan, Zarembo 2002]



Spin chain turns out to be integrable

String theory

Sigma model in AdS is integrable (classically) [Bena, Polchinski, Roiban 2003]



Integrable QFT on a cylinder : solved by Thermodynamic Bethe Ansatz

• Solvable at large N using integrability

2-pt:
$$\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{1}{|x_{12}|^{2\Delta}}$$

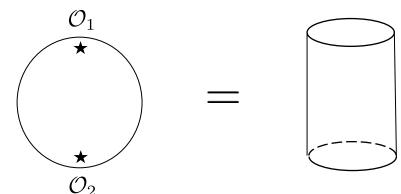
N=4 SYM

Map between "single-trace operators" and spin chains. [Minahan, Zarembo 2002]

Spin chain turns out to be integrable

String theory

Sigma model in AdS is integrable (classically) [Bena, Polchinski, Roiban 2003]



Integrable QFT on a cylinder : solved by Thermodynamic Bethe Ansatz

Quantum spectral curve

[Gromov, Kazakov, Leurent, Volin 2013]

Planar higher-pt functions $\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \rangle$ $\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle$

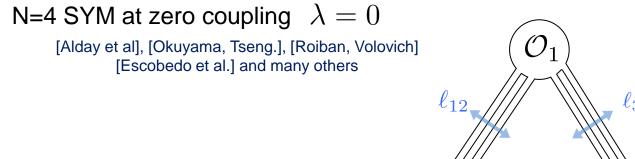
For simplicity, I will focus on the correlation functions of ¹/₂ BPS operators.

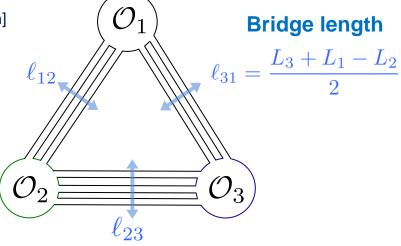
$$\mathcal{O}_i = \operatorname{Tr}\left[(Y_i \cdot \Phi)^{L_i}\right]$$

 $Y_i:$ Null 6-component vector $Y_i \cdot Y_i = 0$

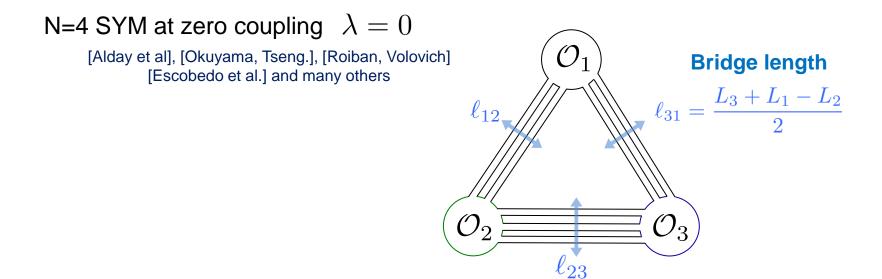
although many things can be generalized to non-BPS operators.

3pt = a pair of pants

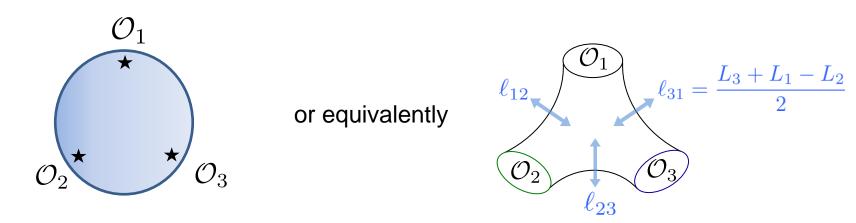




3pt = a pair of pants

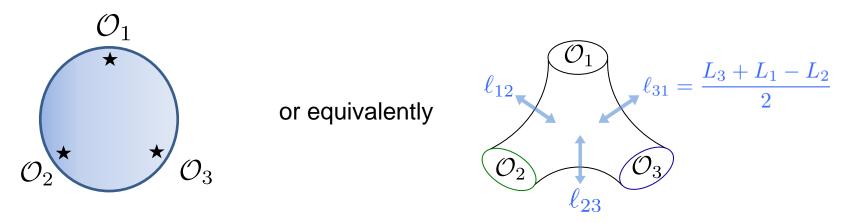


Planar surface for 3pt functions



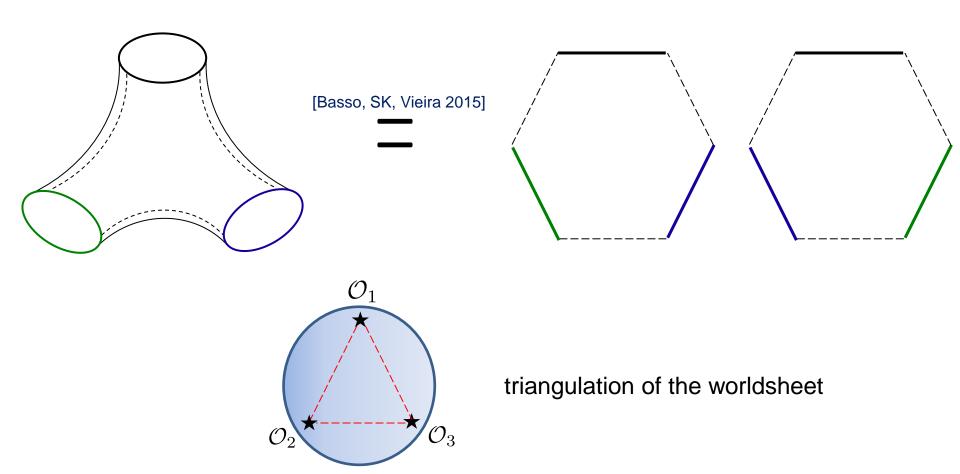
3pt = a pair of pants

Planar surface for 3pt functions

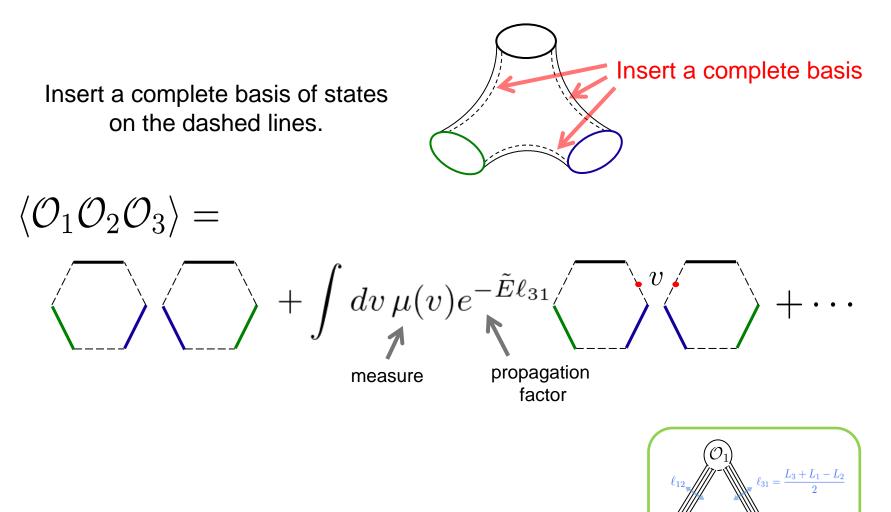


- To use integrability, one has to consider integrable models on a pair of pants.
- Never studied before in the literature.

$3pt = (Hexagon)^2$



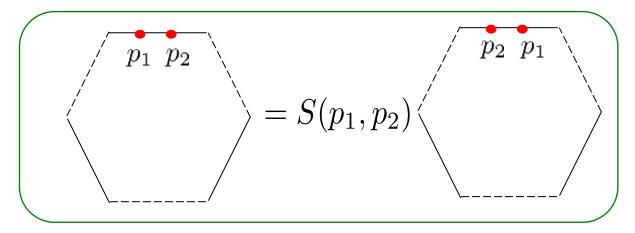
3pt = (Hexagon)²



- Similar to sewing construction of 2d CFT.
- The computation of 3pt boils down to the computation of "hexagons".

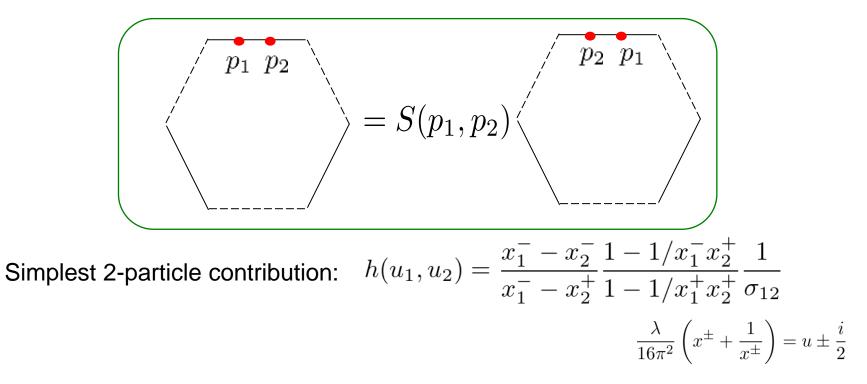
Symmetry (psl(2|2)) and integrability determine the contributions from each hexagon.

"Form factor bootstrap" Cf. [Smirnov]



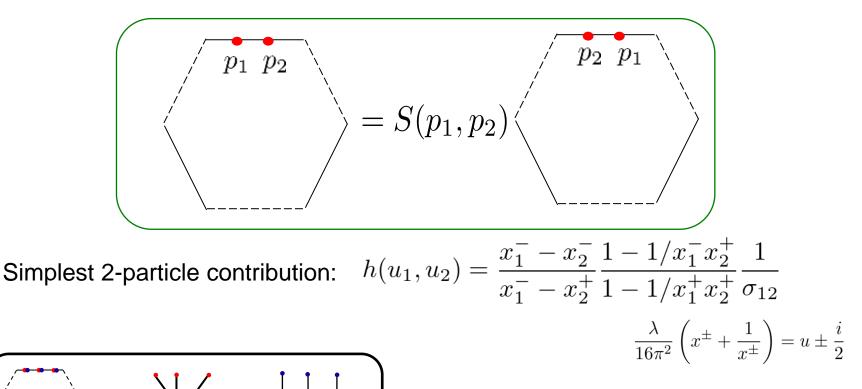
Symmetry (psl(2|2)) and integrability determine the contributions from each hexagon.

"Form factor bootstrap" Cf. [Smirnov]



Symmetry (psl(2|2)) and integrability determine the contributions from each hexagon.

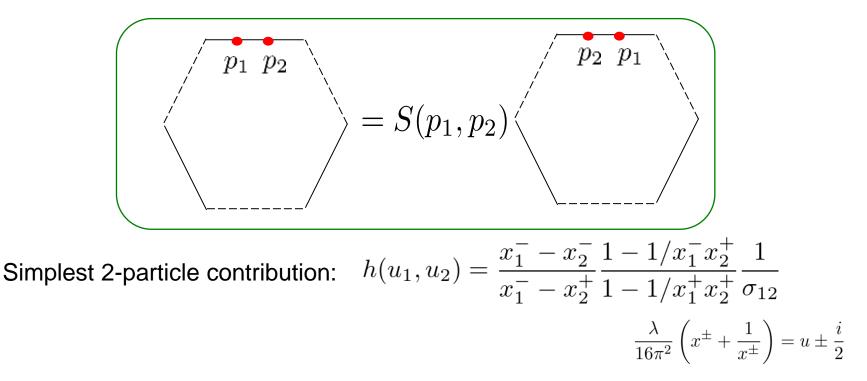
"Form factor bootstrap" Cf. [Smirnov]



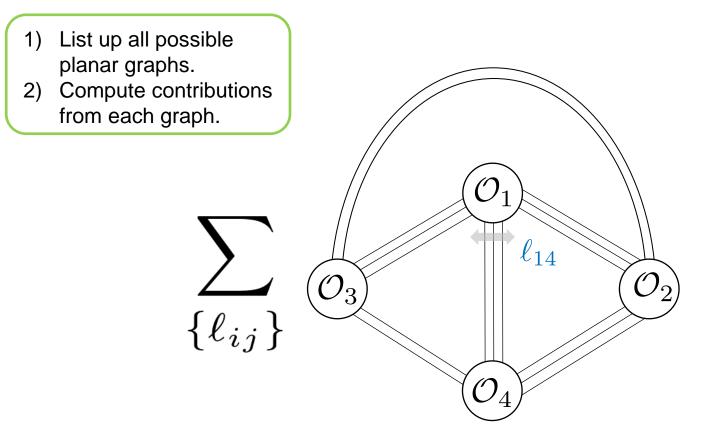
Factorization structure resembling Yang-Baxter.

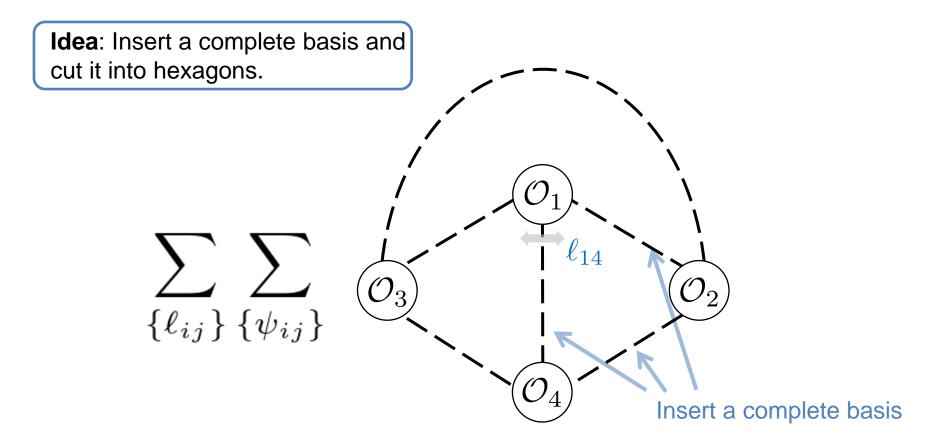
Symmetry (psl(2|2)) and integrability determine the contributions from each hexagon.

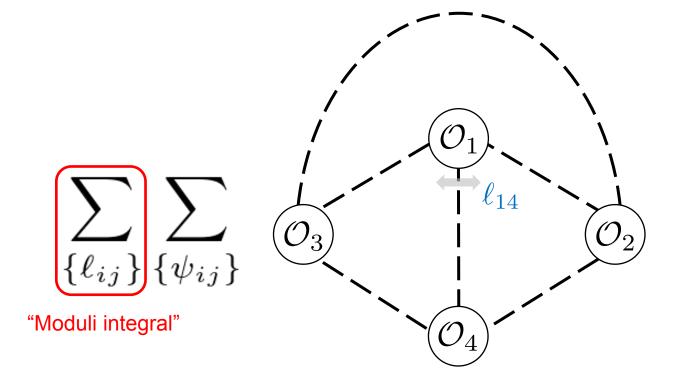
"Form factor bootstrap" Cf. [Smirnov]

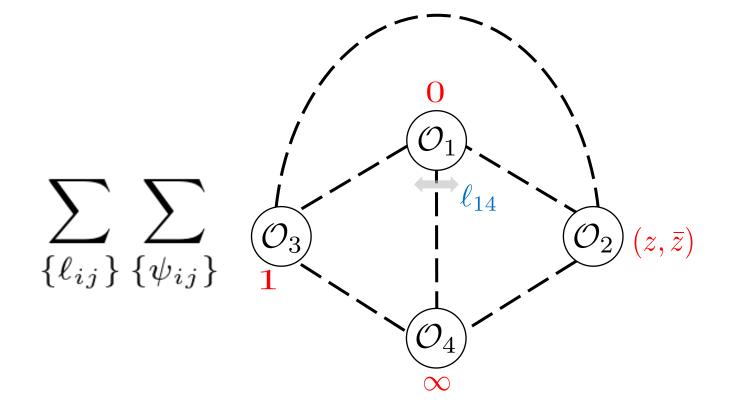


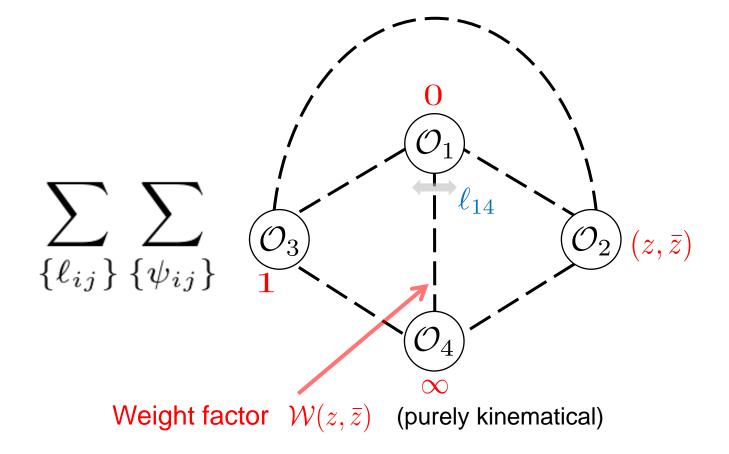
The result beautifully reproduces the perturbative computation (checked up to four loops and partially at strong coupling) [Jiang, Kostov, Serban, SK], [Eden, Sfondrini] [Basso, Goncalves, Vieira SK], [Basso, Goncalves, SK]



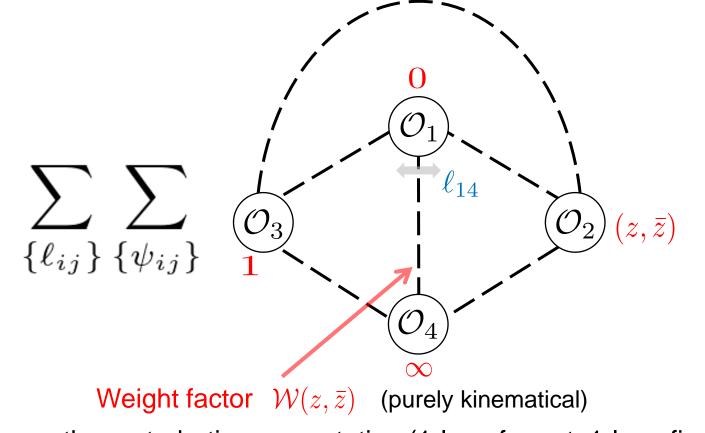








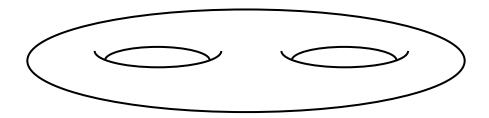
All these can be generalized to higher point functions.



Reproduces the perturbative computation (1-loop four pt, 1-loop five pt, higher loops in special kinematics) [Fleury, SK 2016, 2017], [Fleury, Goncalves, SK in progress]

See also [Eden, Sfondrini 2016]

Can we generalize this to nonplanar surfaces?



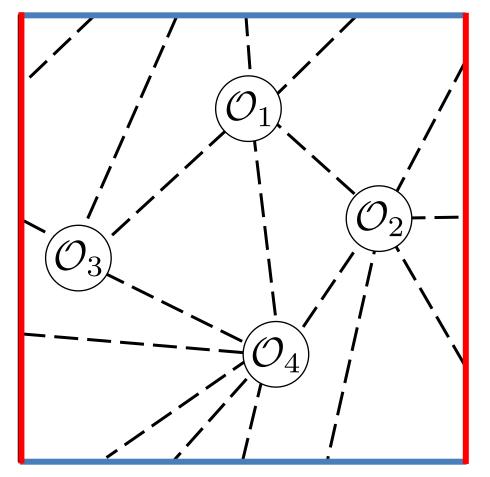
Decomposing the surface with hexagons

First guess

$\sum_{\substack{\text{tree-level } \psi \\ \text{graphs}}} \sum_{\psi} (\texttt{Weight}) \prod(\texttt{Hexagon})$

Decomposing the surface with hexagons

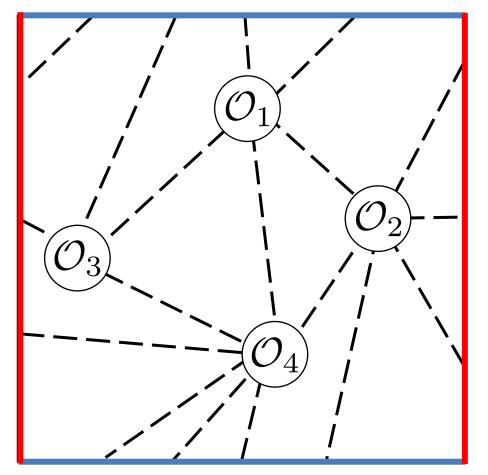
First guess [Bargheer, Caetano, Fleury, Vieira, SK] also [Eden, Jiang, Sfondrini]



Cut the surface into **planar** hexagons, insert a complete basis, and sum over the graph.

Decomposing the surface with hexagons

First guess [Bargheer, Caetano, Fleury, Vieira, SK] also [Eden, Jiang, Sfondrini]



Cut the surface into **planar** hexagons, insert a complete basis, and sum over the graph.

8 hexagons, complicated...

Simplification for large-length operators

Combinatorial enhancement:

When the operators are very long,

 $L_i \gg 1$

the maximally connected graphs will be combinatorially dominant.

of ways to split L propagators to n groups = $\begin{pmatrix} L+n \\ n \end{pmatrix} \sim L^n$

Simplification for large-length operators

Combinatorial enhancement:

When the operators are very long,

 $L_i \gg 1$

the maximally connected graphs will be combinatorially dominant.

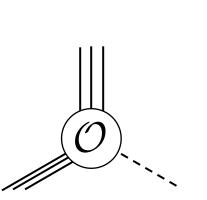
of ways to split L propagators to n groups = $\begin{pmatrix} L+n \\ n \end{pmatrix} \sim L^n$

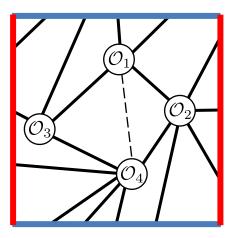
Dynamical suppression:

If all ℓ_{ij} are large, the contributions are exponentially suppressed.

 $e^{-E\ell_{ij}} \ll 1$

Simplification for large-length operators





Submaximal graphs, obtained from the maximal graphs by erasing a few connections, will dominate!

(Locally look the same as planar four-point function.)

$$(\text{4pt at } \frac{1}{N_c^4})\Big|_{L\gg 1} = \lambda \Big[\cdots \Big] F^{(1)} + \lambda^2 \left(\Big[\cdots \Big] F^{(2)} + \Big[\cdots \Big] (F^{(1)})^2 \right) \text{ match!} \\ + \lambda^3 \left(\Big[\cdots \Big] F^{(3)} + \Big[\cdots \Big] F^{(2)} F^{(1)} + \Big[\cdots \Big] (F^{(1)})^3 \right)$$

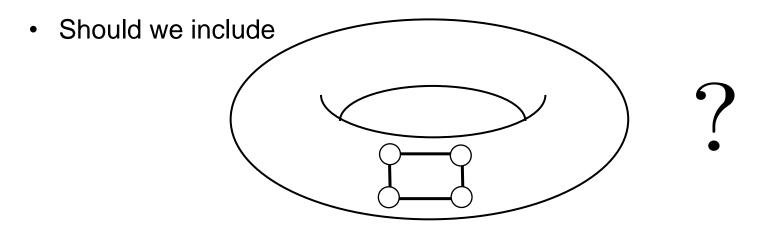
prediction

Finite L's

At $O(\lambda)$, we can also try to study the correlators of finite-length operators.

Puzzle:

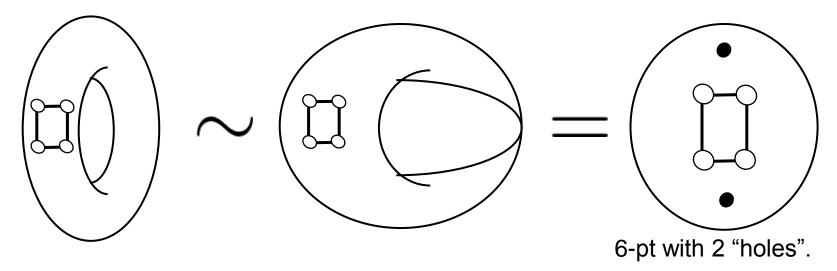
• Our basic strategy : Start from tree-level graphs, cut it into hexagons and dress them with magnons.



• Not at tree level. But we cannot simply throw it away since this can include genuine nonplanar contributions (when dressed with magnons).

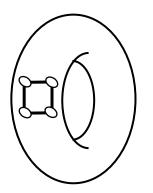
Resolution: Use the analogy between the sum over graphs and the moduli space of Riemann surface.

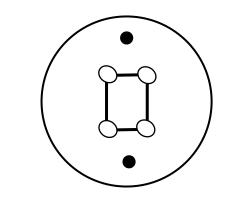
• The graphs that are secretly planar are the analogues of the degenerate Riemann surfaces.



• They correspond to the boundaries of the torus moduli space.

• Prescription: Sum all the graphs and subtract the "boundaries of moduli".





[Deligne-Mumford] [Chekhov]

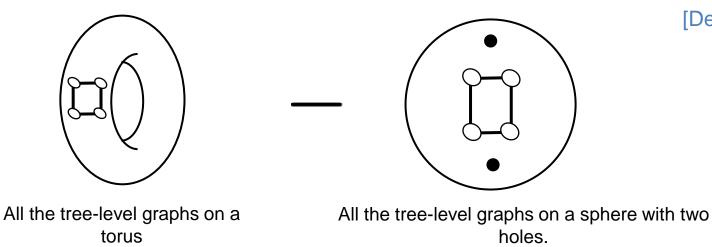
All the tree-level graphs on a torus

All the tree-level graphs on a sphere with two holes.

• Prescription: Sum all the graphs and subtract the "boundaries of moduli".

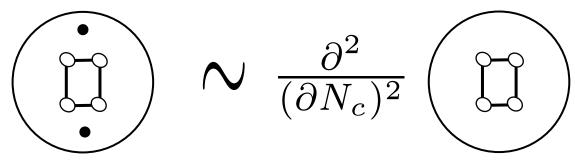
[Deligne-Mumford]

[Chekhov]



 No dynamics at the holes. They are just the holes of the double-line Feynman diagram.

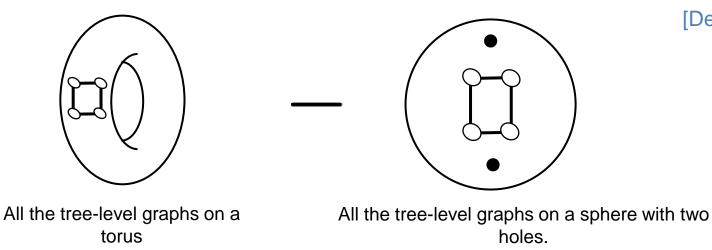
➡ Same as adding probe D3's



• Prescription: Sum all the graphs and subtract the "boundaries of moduli".

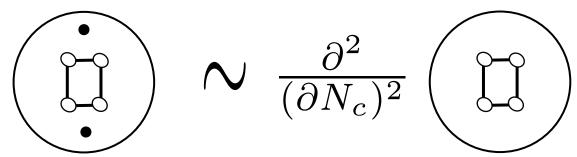
[Deligne-Mumford]

[Chekhov]



 No dynamics at the holes. They are just the holes of the double-line Feynman diagram.

→ Same as adding probe D3's



• Correctly reproduces the finite L answers at $O(\lambda)$

Summary and outlook

Summary:

- One can use integrability to study non-planar quantities.
- Sum over graphs, cut them into planar hexagons.
- Finite L \rightarrow "Stratification".

Outlook:

- Better understand the relation between the graphs and the moduli space, and the stratification. Cf. [Gopakumar 2003] [Razamat 2008] [Gopakumar, Pius 2012]
- Try to resum 1/N series in some kinematics?

Cf. [Gross Mende] [Mende Ooguri]

Find ways to efficiently resum magnons. Quantum spectral curve?