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We want to understand what “is” the space of consistent QFT

consistent = Unitarity, Locality, Spacetime symmetries



We explore the space through the lens of physical observables

UV CFT
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potential to explore new principles governing the “is”



In the study of S-matrix for specific theories, locality and unitarity — emergent from
Positive geometry
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One might be tempted (ambitious) to ask:

Is positive geometry the underlying property of general QFTs?



For a long time positivity IS unitarity

o Positivity in the OPE:
(#(1)8(2)$(3)¢ Zp,KA (2,2), pi>0
o Optical theorem:

Dis[My(s,0)] = E2,0 > 0



For a long time positivity IS unitarity

e Positivity in the OPE:
((1)8(2)(3)p Zp,KA,,g,(z,Z), pi >0

via crossing El-Showka, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi

A,

l17’50 055 060 065 070 075 080

e Optical theorem:
Dis[My(s,0)] = E2,0 > 0

via the eyes of higher-dimension operators a(d)*Adams, Arkani-Hamed, Dubovsky, Nicolis,
Rattazzi
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We should expect more: these are special functions, constrained by factorization and
symmetries

e : CFTs:
(9(1)9(2)9 ZP/QA,,I (z,2), pi>0

Symmetries constrain

(22(1 — 2)02 — 2202)gn 0 = A(A —1)ga
e QFTs:
Dis[My(s, )] = > piGy: (cos0)
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The geometric constraint for general QF T

Consider general QFT whose UV completion is weakly coupled (in M),

wef S g m
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o M#(s,t) = {poles} + > gx_i 8"t
/ . ki
Analytic +
Massless poles

Different QF Ts (standard model) leads to different {g; ;}

Why might the space be non-trivial?



The geometric constraint for general QF T

Why is the space non-trivial (set D = 4 G — P,)?

| s

00 = T (45) ()

T
ya
/ | |

\ \
Analytic + N
Massless poles Poles  Branch cuts
= k—qtq
= 2> va 2k+2uk£ s
k,qg a
so we have

1
Kk— _ q k—
S0 g qtqz(zpamwuk‘,ya)s o
k,q a

k,q a



The geometric constraint for general QF T

Why is the space non-trivial?

1
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Organizing the higher dimension operators as
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The geometric constraint for general QF T

Why is the space non-trivial?
1
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Organizing the higher dimension operators as
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Take k = 2 (dimension 8 operators)
Go = €> wh| Wy, | =D pilee, pa>0
a a

The coefficients must live in the convex hull of the vectors U, 4, i.e. the inside of a
polytope.



Polytope 101

Write things projectively:
1 1
r—( 2 [ .
#=(3) v-(a)
The convex hull is the inside of the polygon
n
Al =wmUf+--+walp, w;>0, ) w=1

i=1

The inside is determined by Det[A, U;, U] > 0

The facet structure is determined by Det[U;, U, U]



Polytope 101
If Ty , for EFT are just random vectors, our geometric problem becomes hopeless
rapidly:
Let’s say given n vectors i, to compute the region of the polytope we need to
o Determine which one of these s are vertices
o Amongst the vertices, determine all the set that constitute boundary facets

The boundaries are (for D = 2) {Ua, Up}
Det[U;, Ua, Up] > 0 Vi

The complexity is ~ nd/2



But T, are not random vectors!
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Gegenbauer Positivity

The U ¢, arrises from Taylor expand

M(s,t) = pa———————
( ) Za:a S_mg

First define
Pe(1+x) = E ve’qxq
q

The vectors Vp = (Ve,0, Ve,1, Ve,2,- - ) are explicitly given by
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Gegenbauer Positivity

All v is positive!

1111 1)1 1 1
013]|6 10J15 21 | 28

00313 45[195 105]|189
0003 3|70 210|525
0000 % ﬁiﬁ
00000 % %' %
0000 0 0 % 306

000 0 %

000

But there is more,
det[Vg1 ng --]1>0, forly >4lo>---

All ordered minors are positive!



Gegenbauer Positivity

det[Vp, Vg, ---1 >0, forly > 0lp > ---

All ordered minors are positive!

Tells us that the convex hull of {V,} is a cyclic polytope

o All V, are vertices

¢ The co-dimension 1 boundaries are known. For v, = (v, - - -

geeven (i,i+1), (i,i+1,j,j+1), (i,i+1,

qEOdd (17’7’+1)7 (1’I7I+1j71+1)7 (Ivl+1»n)7
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Double positivity

But there is more ! vy is not i,
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Double positivity

But there is more ! vy is not ¢,

A ) (1)
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For fixed mass-dimensions we indeed have
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Double positivity

But there is more ! vy is not ¢,

e R)

s—m3

M(s, t)
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For fixed mass-dimensions we indeed have
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Double positivity

But there is more !

M(s,t) = *Zpap (1+2‘>

s—m3
t2

2
S S t
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But for fixed degree in t (scattering angle)

A
0 g0 G0 %0 a0
t! 90,1 911 921
£ G2 91,2
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a1
90,1 , n17§ ,
g1 | € ¥pa G ps >0
92,1 8

The vector is in the convex hull of points on the half-moment curve!
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Double positivity

(17X7X27"'7Xa)’ X€R+

Organizing the couplings for fixed t power into the Hankel matrix (g; = gk ;)

1 gy g;;_1
9 g g,
K(gl) = M : : Ip
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If {g/} lies in the convex hull of half-moment curves, then all minors of K[g'] is positive!
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Double positivity

Consider the EFT of a scalar coupled to gravitons Congkao Wen, Wei-Ming Chen, Y-t
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Let’s suppose we don’t know the constant piece. The positivity of the Hankel matrix
yields O(s%) > 0.0000190301
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Double positivity

We see that the constraint from unitarity, locality and Lorentz invariance forces the EFT
to live in a union of two positive geometries

P, (1+2f>
s—m3

>p <1+ °+ s + > (v Ve, 14V ¢
a_—o [ R R S £g,0T Vg1 a2 74"
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The EFTHedron

The union of the two positive geometry leads to the a new generalization of polytopes:
the EFThedron

* Polytopes: convex hull of vectors

?:ZC,‘V,', ¢ >0
i

o Cyclic Polytopes: convex hull of vectors
\7 = Z C,'\?,', ¢ >0
i

where
<‘7/'17‘7I'27"'7‘7i,,>>0, for iy <ip<---<p

e The EFThedron: =
Ye=>_ Cixvi,
i

where
(‘7}1a‘7iz7"',vin>>0, for i4 <bp<---<lip

and
minors {K[c; x]} >0



The EFTHedron

For general scalar EFT with color ordering (large-N YM),! the space of couplings
{9k,q}, consistent with Unitarity, Locality and Lorentz symmetry is given by

9k € Z Ci .k Vi
i

In other words, the IR avatar of Unitarity, Locality and Lorentz invariant UV completion
is the The EFTHedron

"More on this in 2 slides



The EFTHedron

e The EFThedron: .
Y= Z Ci,k Vi,
i
where
<‘7/17‘7I'27“‘7Vin>>0, for I1<12<<[n

and
minors {K[c; x|} >0

Y= Z Ci,k Vi,
i

e The Amplitudhedron:

where
<‘7/17‘7I'27“‘7Vin>>0, for i1<i2<~..<[n

and
Cik € Gf+(k, n)



The EFTHedron in the real world

Including the u-channel contribution:

Ls
2m e m? 2’ 1 1
. S M(s, t) = Zpana 1+ — et ——
' 7] 4 4 mi) \s—m3  u-m?
/ L L
Analytic + \ A\
Massless poles Poles  Branch cuts
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= M(z,t) = Zpana (1+ )( fzm2+t+2m2>
a 2 a
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Upon Taylor expansion we again have

> Xm [m%kq] ot
k—q€even,q a
where the now the vectors Uy x are given as a k-dependent linear combination of the
Gegenbauer vectors
k—q+1)a,
Ut kg = Z (*)u(qai,)u?b “vgp

a+b=q



The EFTHedron in the real world

k—q+1 -
Ugkg= Y (*)“(qai,)a?b “g
atb=gq i

This in principle destroys any positivity. For example:

g {2} {33})
Det v} — S} {€2} {43}
of, = 19 + 16%%, — aavi, (L2} {6}
o), {6} {6} 3 o, {£} {&} 1 o, {2} {65}
= Det | v}, {2} {5} | = ;Det | v, {&} {ts} | = 35Det | v, {€a} {4s}
vf, {L} {6} v, {€} {65} v, {£2} {6}
N R CI R AR vf, {€} {ts}
- ZDet v?l {6} {¢3} | + EDEt vg, {2} {&} | +---
v, {£} {6} v, {f} {6}



The EFTHedron in the real world

k—q+1 -
Ug g = z (—)a(qa—,)EQb gy
atb=gq :

This in principle destroys any positivity. For example:

v, {€2} {65}
Det v} — S} {2} {5}
vj, = 3% + 16v%, — apvi, (G} {s}
v, {£} {6} 3 v, {€} {65} 1 vp, {€2} {65}
= Det | 02, {62} {ts} | — et | v}, {02} (&5} | — 55 Det | v}, {2} {66}
vp, {2} {3} vg, {£} {£s} vf {6} {£3}
1 v, {£} {63} 3 v, {t} {&s}
- ZDCt ’U?l {fz} {Z;;} + EDet v£11 {22} {53} +---
v, {£} {63} v, {£} {6}

Yet above a critical spin, all minors are positive!

k|2 |34 56|78
be |1 |22 |3|3|4|4|5| 5

O
-
o

This positivity exploits the hierarchy of minors.



The EFTHedron in the real world

The geometry is richer in the real world

m e w s
g0 G0 G0 a0
t 90,1 91,1 921
£ G2 91,2
B 90,3

o For fixed mass-dimension, there is a critical spin above which it becomes cylic (all
ordered minors are positive)

e The boundaries are determined from the cylicity

(X,i,i+1)>0for, i>5,(X,4,3)>0, (X,3,5)>0



The EFTHedron in the real world

The geometry is richer in the real world

m e w s
° 9o G0 G0 Gso
t Jo,1 91,1 921
£ Jo2 Gi2
3 90,3

e The boundaries of the Minkowski sum is always given by that of the highest k

g1,0 92,0 93,0 93,0
o 5 s s =0 5
[( 90,1 )69( 911 )@( 92,1 )} ( 92,1 )
e The moment curve constraint is generalized to rescaled moment curves

Z(‘],X{,Xﬁfﬂ)%Z(1,Xj,’)/Xi2,---)
i i



The EFTHedron in the real world

The same structure is found for when the external states are massless with spins:
photons, gauge bosons, and gravitons:

Gy (cos8) — iy _py pa—n, (0) = (€, i — hole™"®T¥|¢, hy — hy)

We simply replace Gegenbauer polynomials with Wigner d-function. For (—h, h, h, —h)
we simply have
d” op.2n(0) = T (£ + 4h,0, —4h, cos 0)



The EFTHedron in the real world

Consider the configuration ( -2, 42, +2, -2) where we have

(14)%[23)* (Z i7" zf) (8)

i
The exchanged spin begins with spin-4
o (z%,1%): The space is one-dimensional, and the bound is simply
_1 g0
36 go2

o (z%,22t2,t"): The critical spin is s, = 6, spin-4 is inside the hull, i.e. not a vertex. The boundaries
are:
(X,ii+1)>0for, i27,(X,65 >0, (X,57>0 )

Out[175)=
0.




The space of CFT from (¢(1)¢(2)é(3)p(4))

Consider the a 1D four-point function:
((1)0(2)6(3)8(4)) = F(2)

F(z) = ZpACA(z), Ca(z) = 22 2F1(A, A, 24, 2)
A

Expand the four-point function, around z = %

1 oo

F (f +y) => foy?
2
q=0

We consider the space

Crossing symmetry

2722 F(z) = (1 — 2) 2R F(1—2) = F(2) = (1 fz)2A¢ F(1-2)

implies the four-point function lies in a subplane X



The space of CFT from (¢(1)¢(2)é(3)p(4))

The 1-D blocks also yield an infinite set of vectors
1 > q
Ca > +y)= ZCA,qy
q=0
Unitarity then requires that

fo a0

F= : € pa . pa >0
. A .



The space of CFT from (¢(1)¢(2)é(3)p(4))

fo a0
fy Ca 1
F= : € pa . pa >0
: A :
fL_+ CA,L—1

For a given CFT spectrum have the polytope P(A;) = >_;pa,Ca, and a crossing plane
X(Ag), and they must intersect. For example:

Ca,

B0=0, A4=2, B8g=0, B4=2,
8,225, £y=3.1 8,225, A;=31
£4=0.2 Ag=05

80=0, A=2,
£;=2.5, A3=3.1
£g=0.34




The CFTHedron

Is there a similar structure?

Indeed there is!

Ca(21) Cay(z1) -+ Can(#)
Cai(22) Cay(22) -+ Can(2)

Det : : : : >
Cay(z0) Caglzn) - Ca(20)

forzy <z < - <zpand Ay < Ap < -+ < Ap

The convex hull of the block vectors is again a cyclic polytope!



The CFTHedron

This gives us the control over the relevant boundaries

fo Ca,0
fi a1
F=| . €D rm . pa >0
: A :
fL_1 Ca,L—1

For example with with D = 1, (fy, f2) the relevant boundaries are

= (14814,

= (o0l4y),

= (00A14,),
= (18.4)),

=(

00AA) .

The resulting carved out space is




The CFTHedron

This can be simply understood as considering the condition:
(/d, F, A,‘, A,’+1 > >0

Projecting through Id = (1,0, 0, 0), we have a two-dimension geometry

Aint

where Ay — (F,1,A) =0



The CFTHedron

Constraint on the specturm

allowed : , not allowed :

Crossing plane

" Crossing plane

As well as the four-point function

g A

min

* Crossing plane



The CFTHedron

At the next order we have (fy, f», f4) inside a four-dimensional polytope.

Exp, given A4 = 0.3, in the space of possible lowest first two operators (A1, Ap) are
given by:

10




The CFTHedron

We can also understand this plot from the geometry. Projecting through /d and X:

The task is that the spectrum must form a triangle that contains the origin.



Conclusions

The constraint of unitarity, locality and symmetries manifest itself as positive geometry
on the space of consistent QF Ts.

For EFTs the space of consistent coupling constant /s the EFThedron

For CFTs the space is given by the combinatorics arising from the intersection of the
crossing plane with the cyclic polytope

o For the s—u EFThedron, the space for generalized moment curve remains to be
explored.

o For practical bounds, explore the space for mixed graviton photon scattering
o Proof of various conjectures (Weak gravity) for the land scape.

e Solving the 1D CFT geometry at higher dimensions (in external data)

e Extensions to CFT with D > 1 expose the CFThedron



