M-theory S-Matrix from 3d SCFT

Silviu S. Pufu, Princeton University

Based on:

- arXiv:1711.07343 with N. Agmon and S. Chester
- arXiv:1804.00949 with S. Chester and X. Yin

Also:

- arXiv:1406.4814, arXiv:1412.0334 with S. Chester, J. Lee, and R. Yacoby
- arXiv:1610.00740 with M. Dedushenko and R. Yacoby

OIST, June 26, 2018

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric (N = 8) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on AdS₄ × S⁷ ⇐⇒ U(N)_k × U(N)_{-k} ABJM theory at CS level k = 1.
- Last 10 years: progress in QFT calculations
 - using supersymmetric localization;
 - using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
- Example: *S*³ partition function of ABJM theory can be written as an *N*-dim'l integral. What info about M-theory does it contain?

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric (N = 8) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on AdS₄ × S⁷ ⇐⇒ U(N)_k × U(N)_{-k} ABJM theory at CS level k = 1.
- Last 10 years: progress in QFT calculations
 - using supersymmetric localization;
 - using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
- Example: *S*³ partition function of ABJM theory can be written as an *N*-dim'l integral. What info about M-theory does it contain?

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric (N = 8) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on AdS₄ × S⁷ ⇐⇒ U(N)_k × U(N)_{-k} ABJM theory at CS level k = 1.
- Last 10 years: progress in QFT calculations
 - using supersymmetric localization;
 - using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
- Example: *S*³ partition function of ABJM theory can be written as an *N*-dim'l integral. What info about M-theory does it contain?

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric (N = 8) CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on AdS₄ × S⁷ ⇐⇒ U(N)_k × U(N)_{-k} ABJM theory at CS level k = 1.
- Last 10 years: progress in QFT calculations
 - using supersymmetric localization;
 - using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
- Example: *S*³ partition function of ABJM theory can be written as an *N*-dim'l integral. What info about M-theory does it contain?

M-theory S-matrix

- **This talk:** Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).
- Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

$$S = \int d^{11}x \sqrt{g} \left[R + \text{Riem}^4 + \dots + (\text{SUSic completion}) \right]$$
.

• Restrict momenta to be in 4 out of the 11 dimensions.

- **This talk:** Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).
- Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

$$S = \int d^{11}x \sqrt{g} \left[R + \text{Riem}^4 + \dots + (\text{SUSic completion}) \right]$$

Restrict momenta to be in 4 out of the 11 dimensions.

- **This talk:** Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).
- Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

$$S = \int d^{11}x \sqrt{g} \left[R + \text{Riem}^4 + \dots + (\text{SUSic completion}) \right]$$

• Restrict momenta to be in 4 out of the 11 dimensions.

From the 4d point of view, we can scatter:

- graviton (1);
- gravitinos (8);
- gravi-photons (28);
- gravi-photinos (56);
- scalars (70 = 35 + 35)
- At **leading** order in small momentum (i.e. momentum squared), scattering amplitudes are those in $\mathcal{N} = 8$ SUGRA at tree level. Amplitude depends on the type of particle, e.g.

$$egin{aligned} \mathcal{A}_{ ext{SUGRA, tree}}(h^-h^+h^+h^+) &= rac{\langle 12
angle^4 [34]^4}{stu}\,, \ \mathcal{A}_{ ext{SUGRA, tree}}(S_1S_1S_2S_2) &= rac{tu}{s}\,, \ ext{etc.} \end{aligned}$$

but they're all related by SUSY. (See Elvang & Huang's book.)

From the 4d point of view, we can scatter:

- graviton (1);
- gravitinos (8);
- gravi-photons (28);
- gravi-photinos (56);
- scalars (70 = 35 + 35)
- At **leading** order in small momentum (i.e. momentum squared), scattering amplitudes are those in $\mathcal{N} = 8$ SUGRA at tree level. Amplitude depends on the type of particle, e.g.

$$\mathcal{A}_{\text{SUGRA, tree}}(h^-h^-h^+h^+) = rac{\langle 12 \rangle^4 [34]^4}{stu},$$

 $\mathcal{A}_{\text{SUGRA, tree}}(S_1S_1S_2S_2) = rac{tu}{s},$ etc.

but they're all related by SUSY. (See Elvang & Huang's book.)

Momentum expansion

 Momentum expansion takes a universal form (independent of the type of particle):

$$\begin{split} \mathcal{A} &= \mathcal{A}_{\text{SUGRA, tree}} \bigg(1 + \ell_{\rho}^{6} f_{R^{4}}(s,t) + \ell_{\rho}^{9} f_{1\text{-loop}}(s,t) \\ &+ \ell_{\rho}^{12} f_{D^{6}R^{4}}(s,t) + \ell_{\rho}^{14} f_{D^{8}R^{4}}(s,t) + \cdots \bigg) \,. \end{split}$$

- $f_{D^{2n}R^4}$ = symmetric polyn in s, t, u of degree n + 3
- Known from type II string theory + SUSY [Green, Tseytlin, Gutperle, Vanhove, Russo, Pioline, ...]:

$$f_{R^4}(s,t) = rac{stu}{3\cdot 2^7}\,, \qquad f_{D^6R^4}(s,t) = rac{(stu)^2}{15\cdot 2^{15}}\,.$$

- $\ell_p^{10} f_{D^4 R^4}$ allowed by SUSY, but known to vanish.
- This talk: Reproduce f_{R^4} from 3d SCFT.

Flat space limit of CFT correlators

- Idea: Flat space scattering amplitudes can be obtained as limit of CFT correlators [Polchinski '99; Susskind '99; Giddings '99; Penedones '10; Fitzpatrick, Kaplan '11].
- For a CFT₃ operator $\phi(x)$ with $\Delta_{\phi} = 1$,

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle_{\text{conn}} = \frac{1}{x_{12}^2 x_{34}^2} g(U, V)$$

go to Mellin space

$$g(U, V) = \int \frac{ds \, dt}{(4\pi i)^2} U^{t/2} V^{(u-2)/2} \Gamma^2 \left(1 - \frac{s}{2}\right) \Gamma^2 \left(1 - \frac{t}{2}\right) \Gamma^2 \left(1 - \frac{u}{2}\right) M(s, t)$$

where $s + t + u = 4$ and $U = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, V = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}.$

• From the large
$$s, t$$
 limit of $M(s, t)$ one can extract 4d scattering amplitude $\mathcal{A}(s, t)$ [Penedones '10; Fitzpatrick, Kaplan '11].

Flat space limit of CFT correlators

- Idea: Flat space scattering amplitudes can be obtained as limit of CFT correlators [Polchinski '99; Susskind '99; Giddings '99; Penedones '10; Fitzpatrick, Kaplan '11].
- For a CFT₃ operator $\phi(x)$ with $\Delta_{\phi} = 1$,

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle_{\text{conn}} = \frac{1}{x_{12}^2 x_{34}^2} g(U,V)$$

go to Mellin space

$$g(U, V) = \int \frac{ds \, dt}{(4\pi i)^2} U^{t/2} V^{(u-2)/2} \Gamma^2 \left(1 - \frac{s}{2}\right) \Gamma^2 \left(1 - \frac{t}{2}\right) \Gamma^2 \left(1 - \frac{u}{2}\right) M(s, t)$$

where $s + t + u = 4$ and $U = \frac{x_{12}^2 x_{34}^2}{x_{12}^2 x_{24}^2}, V = \frac{x_{14}^2 x_{23}^2}{x_{12}^2 x_{24}^2}.$

• From the large *s*, *t* limit of M(s, t) one can extract 4d scattering amplitude $\mathcal{A}(s, t)$ [Penedones '10; Fitzpatrick, Kaplan '11].

• To obtain scattering amplitude of graviton + superpartners in M-theory, look at stress tensor multiplet in ABJM theory (ABJM theory is a 3d $\mathcal{N} = 8$ SCFT, and so it has $\mathfrak{so}(8)_R$ R-symmetry):

	dimension	spin	$\mathfrak{so}(8)_R$	couples to
focus on this \longrightarrow	1	0	35 _c	scalars
	3/2		56 _v	gravi-photinos
	2	0	35 <i>s</i>	pseudo-scalars
	2	1	28	gravi-photons
	5/2	3/2	8 _V	gravitinos
	3	2	1	graviton

• Task: find the Mellin amplitude M(s, t) corresponding to $\langle S_{IJ}S_{KL}S_{MN}S_{PQ}\rangle$ by solving superconformal Ward identity [Dolan, Gallot, Sokatchev '04] order by order in $\ell_p^2 \propto N^{-1/3} \propto c_T^{-2/9}$.

Here,
$$\langle T_{\mu
u}T_{
ho\sigma}
angle\propto c_T\propto N^{3/2}$$

Require: 1) at order \(\ell_p^{2k}\), \(M(s, t)\) should not grow faster than (k + 1)st power of s, t, u;
 2) right analytic properties to correspond to a bulk tree-level Witten diagram.

• Number of such solutions to Ward identity is:

degree in <i>s</i> , <i>t</i> , <i>u</i>	1	2	3	4	5	6	7	
11D vertex	R			R^4		$D^4 R^4$	$D^6 R^4$	
scaling	c_{T}^{-1}			$c_{T}^{-\frac{5}{3}}$		$(0 \times) c_T^{-\frac{19}{9}}$	$c_{T}^{-\frac{7}{3}}$	
# of params	1			2		3	4	

(degree 1 in [Zhou '18]); degree \geq 2 in [Chester, SSP, Yin '18] .) So:

- To determine *M*(*s*, *t*) to order 1/*c*_T we should compute **one** CFT quantity.
- To determine M(s, t) to order $1/c_T^{5/3}$ we should compute **two** CFT quantities.

Require: 1) at order \(\ell_p^{2k}\), \(M(s, t)\) should not grow faster than (k + 1)st power of s, t, u;
 2) right analytic properties to correspond to a bulk tree-level Witten diagram.

• Number of such solutions to Ward identity is:

degree in <i>s</i> , <i>t</i> , <i>u</i>	1	2	3	4	5	6	7	
11D vertex	R			R^4		$D^4 R^4$	$D^6 R^4$	
scaling	c_{T}^{-1}			$c_{T}^{-\frac{5}{3}}$		$(0 \times) c_T^{-\frac{19}{9}}$	$c_{T}^{-\frac{7}{3}}$	
# of params	1			2		3	4	

(degree 1 in [Zhou '18]); degree \geq 2 in [Chester, SSP, Yin '18] .) So:

- To determine *M*(*s*, *t*) to order 1/*c*_T we should compute **one** CFT quantity.
- To determine M(s, t) to order $1/c_T^{5/3}$ we should compute **two** CFT quantities.

CFT quantities

 The CFT quantities can be, for instance, squared OPE coefficients appearing in the superconformal block decomposition. Schematically,

$$\langle S_{IJ}S_{KL}S_{MN}S_{PQ}
angle = rac{1}{x_{12}^2x_{34}^2}\sum_{\mathcal{N}\,=\,8 \text{ supermultiplets }\mathcal{M}}\lambda_{\mathcal{M}}^2\mathcal{G}_{\mathcal{M}}(U,V)\,.$$

(\mathcal{M} is a superconformal multiplet appearing in the $S \times S$ OPE.)

• $T_{\mu\nu}$ Ward identity gives $\lambda_{\text{stress}}^2 = 256/c_T$. Using SUSY tricks, one can compute [Agmon, Chester, SSP '17] :

$$\lambda_{B,2}^2 = rac{32}{3} - rac{1024(4\pi^2 - 15)}{9\pi^2} rac{1}{c_T} + 40960 \left(rac{2}{9\pi^8}
ight)^rac{1}{c_T^{5/3}} + \cdots$$

where "stress" is the stress tensor multiplet, and "(B,2)" is a 1/4-BPS multiplet appearing in the OPE $S \times S$.

Precision test of AdS/CFT

- Using these two expressions, we determined M(s, t) to order $1/c_T^{5/3}$.
- The flat space limit implies $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$, as expected.
- This is a precision test of AdS/CFT beyond supergravity!!

Precision test of AdS/CFT

- Using these two expressions, we determined M(s, t) to order $1/c_T^{5/3}$.
- The flat space limit implies $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$, as expected.

• This is a precision test of AdS/CFT beyond supergravity!!

Precision test of AdS/CFT

- Using these two expressions, we determined M(s, t) to order $1/c_T^{5/3}$.
- The flat space limit implies $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$, as expected.
- This is a precision test of AdS/CFT beyond supergravity!!

OPE coefficients from SUSic localization

 It is hard to calculate correlation functions at separated points using SUSic localization. See however [Gerkchovitz, Gomis, Ishtiaque, Karasik, Komargodski, SSP '16; Dedushenko, SSP, Yacoby '16].

How were c_T and $\lambda^2_{(B,2)}$ computed?

- From derivatives of the S^3 partition function with respect to an $\mathcal{N} = 4$ -preserving mass parameter *m*, which can be computed using supersymmetric localization.
- (For *c_T*, see also [Chester, Lee, SSP, Yacoby '14] for another method based on [Closset, Dumitrescu, Festuccia, Komargodski, Seiberg '12] .)

OPE coefficients from SUSic localization

 It is hard to calculate correlation functions at separated points using SUSic localization. See however [Gerkchovitz, Gomis, Ishtiaque, Karasik, Komargodski, SSP '16; Dedushenko, SSP, Yacoby '16].

How were c_T and $\lambda_{(B,2)}^2$ computed?

- From derivatives of the S^3 partition function with respect to an $\mathcal{N} = 4$ -preserving mass parameter *m*, which can be computed using supersymmetric localization.
- (For *c_T*, see also [Chester, Lee, SSP, Yacoby '14] for another method based on [Closset, Dumitrescu, Festuccia, Komargodski, Seiberg '12] .)

Mass-deformed S^3 partition function

• For an $\mathcal{N} = 4$ -preserving mass deformation of ABJM theory, $Z_{S^3}(m)$ is [Kapustin, Willett, Yaakov '09]:

$$Z_{S^3}(m) = \int d^N \lambda \, d^N \mu \, e^{ik \sum_i (\lambda_i^2 - \mu_i^2)} \frac{\prod_{i < j} \sinh^2(\lambda_i - \lambda_j) \sinh^2(\mu_i - \mu_j)}{\prod_{i,j} \cosh(\lambda_i - \mu_j + m) \cosh(\lambda_i - \mu_j)}$$

- Small N: can evaluate integral exactly.
- Large *N*: rewrite $Z_{S^3}(m)$ as the partition function of non-interacting Fermi gas of *N* particles with [Marino, Putrov '11; Nosaka '15]

$$U(x) = \log(2\cosh x) - mx, \qquad T(p) = \log(2\cosh p).$$

Resummed perturbative expansion [Nosaka '15] :

$$Z_{S^3}(m) \sim \operatorname{Ai}\left(f_1(m)N - f_2(m)\right)$$

for some known functions $f_1(m)$ and $f_2(m)$. (log $Z \propto N^{3/2}$)

Mass-deformed S^3 partition function

• For an $\mathcal{N} =$ 4-preserving mass deformation of ABJM theory, $Z_{S^3}(m)$ is [Kapustin, Willett, Yaakov '09] :

$$Z_{S^3}(m) = \int d^N \lambda \, d^N \mu \, e^{ik \sum_i (\lambda_i^2 - \mu_i^2)} \frac{\prod_{i < j} \sinh^2(\lambda_i - \lambda_j) \sinh^2(\mu_i - \mu_j)}{\prod_{i,j} \cosh(\lambda_i - \mu_j + m) \cosh(\lambda_i - \mu_j)}$$

- Small N: can evaluate integral exactly.
- Large *N*: rewrite $Z_{S^3}(m)$ as the partition function of non-interacting Fermi gas of *N* particles with [Marino, Putrov '11; Nosaka '15]

$$U(x) = \log(2\cosh x) - mx$$
, $T(p) = \log(2\cosh p)$.

Resummed perturbative expansion [Nosaka '15] :

$$Z_{S^3}(m) \sim \operatorname{Ai}\left(f_1(m)N - f_2(m)\right)$$

for some known functions $f_1(m)$ and $f_2(m)$. (log $Z \propto N^{3/2}$)

- 3d $\mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP, Yacoby '16] defined on a line (0, 0, x) in \mathbb{R}^3 .
- $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$ depends only on the ordering of x_i on the line.
- Ops in 1d are 3d 1/2-BPS operators $O(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with *x*-dependent R-symmetry polarizations.
- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $\mathbb{Q} = "Q + S"$ cohomology s.t. translations in *x* are \mathbb{Q} -exact.
- The topological sector is defined either on a line in flat space or on a great circle of S³.
- In ABJM, construct 1d operators S_α(x) from S_{IJ}, α = 1, 2, 3. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and λ²_(B,2).

- 3d $\mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP, Yacoby '16] defined on a line (0, 0, x) in \mathbb{R}^3 .
- $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$ depends only on the ordering of x_i on the line.
- Ops in 1d are 3d 1/2-BPS operators $O(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with *x*-dependent R-symmetry polarizations.
- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $\mathbb{Q} = "Q + S"$ cohomology s.t. translations in *x* are \mathbb{Q} -exact.
- The topological sector is defined either on a line in flat space or on a great circle of S³.
- In ABJM, construct 1d operators S_α(x) from S_{IJ}, α = 1, 2, 3. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and λ²_(B,2).

- 3d $\mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP, Yacoby '16] defined on a line (0, 0, x) in \mathbb{R}^3 .
- $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$ depends only on the ordering of x_i on the line.
- Ops in 1d are 3d 1/2-BPS operators $O(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with *x*-dependent R-symmetry polarizations.
- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $\mathbb{Q} = "Q + S"$ cohomology s.t. translations in *x* are \mathbb{Q} -exact.
- The topological sector is defined either on a line in flat space or on a great circle of *S*³.
- In ABJM, construct 1d operators S_α(x) from S_{IJ}, α = 1, 2, 3. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and λ²_(B,2).

- 3d $\mathcal{N} = 4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP, Yacoby '16] defined on a line (0, 0, x) in \mathbb{R}^3 .
- $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$ depends only on the ordering of x_i on the line.
- Ops in 1d are 3d 1/2-BPS operators $O(\vec{x})$ placed at $\vec{x} = (0, 0, x)$ and contracted with *x*-dependent R-symmetry polarizations.
- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $\mathbb{Q} = "Q + S"$ cohomology s.t. translations in *x* are \mathbb{Q} -exact.
- The topological sector is defined either on a line in flat space or on a great circle of S³.
- In ABJM, construct 1d operators S_α(x) from S_{IJ}, α = 1,2,3. Their 2-pt function depends on c_T; their 4-pt function depends on c_T and λ²_(B,2).

From $Z_{S^3}(m)$ to OPE coefficients

- One can show $Z_{S^3}(m) = Z_{S^1}(m)$, and so derivatives of the Z_{S^3} w.r.t. *m* corresponds to integrated correlators in the 1d theory.
- From 2 derivatives of Z_{S^3} w.r.t. *m* we can extract c_T .
- From 4 derivatives of Z_{S^3} w.r.t. *m* we can extract $\lambda_{(B,2)}^2$.
- So the (resummed) perturbative expansion of c_T, λ²_{B,2} can be written in terms of derivatives of the Airy function!
- Eliminating N gives

$$\lambda_{B,2}^2 = \frac{32}{3} - \frac{1024(4\pi^2 - 15)}{9\pi^2} \frac{1}{c_T} + 40960 \left(\frac{2}{9\pi^8}\right)^{\frac{1}{3}} \frac{1}{c_T^{5/3}} + \cdots$$

• (Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang '17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)

From $Z_{S^3}(m)$ to OPE coefficients

- One can show $Z_{S^3}(m) = Z_{S^1}(m)$, and so derivatives of the Z_{S^3} w.r.t. *m* corresponds to integrated correlators in the 1d theory.
- From 2 derivatives of Z_{S^3} w.r.t. *m* we can extract c_T .
- From 4 derivatives of Z_{S^3} w.r.t. *m* we can extract $\lambda^2_{(B,2)}$.
- So the (resummed) perturbative expansion of c_T, λ²_{B,2} can be written in terms of derivatives of the Airy function!
- Eliminating N gives

$$\lambda_{B,2}^2 = \frac{32}{3} - \frac{1024(4\pi^2 - 15)}{9\pi^2} \frac{1}{c_T} + 40960 \left(\frac{2}{9\pi^8}\right)^{\frac{1}{3}} \frac{1}{c_T^{5/3}} + \cdots$$

 (Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang '17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)

From $Z_{S^3}(m)$ to OPE coefficients

- One can show $Z_{S^3}(m) = Z_{S^1}(m)$, and so derivatives of the Z_{S^3} w.r.t. *m* corresponds to integrated correlators in the 1d theory.
- From 2 derivatives of Z_{S^3} w.r.t. *m* we can extract c_T .
- From 4 derivatives of Z_{S^3} w.r.t. *m* we can extract $\lambda^2_{(B,2)}$.
- So the (resummed) perturbative expansion of c_T, λ²_{B,2} can be written in terms of derivatives of the Airy function!
- Eliminating *N* gives

$$\lambda_{B,2}^2 = \frac{32}{3} - \frac{1024(4\pi^2 - 15)}{9\pi^2} \frac{1}{c_T} + 40960 \left(\frac{2}{9\pi^8}\right)^{\frac{1}{3}} \frac{1}{c_T^{5/3}} + \cdots$$

• (Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang '17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)

Beyond f_{R^4} ?

• Can one go beyond reconstructing f_{R^4} ?

- More SUSic localization results for ABJM theory are available: Z_{S^3} as a function of three real mass parameters; partition function on a squashed sphere, etc.
 - Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^4R^4} = 0$ and maybe even determine $f_{D^6R^4}$. (Work in progress with D. Binder and S. Chester.)
- Another approach: conformal bootstrap.
 - Generally, we obtain bounds on various quantities.
 - If the bounds are saturated, then we can solve for the CFT data.

Beyond f_{R^4} ?

- Can one go beyond reconstructing *f*_{*R*⁴}?
- More SUSic localization results for ABJM theory are available: Z_{S^3} as a function of three real mass parameters; partition function on a squashed sphere, etc.
 - Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^4R^4} = 0$ and maybe even determine $f_{D^6R^4}$. (Work in progress with D. Binder and S. Chester.)
- Another approach: conformal bootstrap.
 - Generally, we obtain bounds on various quantities.
 - If the bounds are saturated, then we can solve for the CFT data.

Beyond f_{R^4} ?

- Can one go beyond reconstructing *f*_{*R*⁴}?
- More SUSic localization results for ABJM theory are available: Z_{S^3} as a function of three real mass parameters; partition function on a squashed sphere, etc.
 - Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^4R^4} = 0$ and maybe even determine $f_{D^6R^4}$. (Work in progress with D. Binder and S. Chester.)
- Another approach: conformal bootstrap.
 - Generally, we obtain bounds on various quantities.
 - If the bounds are saturated, then we can solve for the CFT data.

Known $\mathcal{N} = 8$ SCFTs

A few families of $\mathcal{N} = 8$ SCFTs:

- With holographic duals:
 - $ABJM_{N,1}$: $U(N)_1 \times U(N)_{-1} \quad \longleftrightarrow \quad AdS_4 \times S^7$.
 - ABJM_{N,2}: $U(N)_2 \times U(N)_{-2} \quad \longleftrightarrow \quad AdS_4 \times S^7/\mathbb{Z}_2.$
 - $ABJ_{N,2}$: $U(N)_2 \times U(N+1)_{-2} \quad \longleftrightarrow \quad AdS_4 \times S^7/\mathbb{Z}_2.$
- Without known holographic duals:

• BLG_k: $SU(2)_k \times SU(2)_{-k}$.

Bootstrap bounds [Agmon, Chester, SSP '17]

• Bounds from conformal bootstrap applying to all $\mathcal{N} = 8$ SCFTs.

• SUGRA (leading large c_T) saturates bootstrap bounds.

• Conjecture: ABJM_{*N*,1} or ABJM_{*N*,2} or ABJ_{*N*,2} saturate bound at all *N* in the limit of infinite precision.

Bootstrap bounds [Agmon, Chester, SSP '17]

• Bounds from conformal bootstrap applying to all $\mathcal{N} = 8$ SCFTs.

- SUGRA (leading large *c*_T) saturates bootstrap bounds.
- Conjecture: ABJM_{*N*,1} or ABJM_{*N*,2} or ABJ_{*N*,2} saturate bound at all *N* in the limit of infinite precision.

Bound saturation \implies read off CFT data

• On the boundary of the bootstrap bounds, the solution to crossing should be unique \implies can find $\langle S_{IJ}S_{KL}S_{MN}S_{PQ}\rangle$ and solve for the spectrum !! [Agmon, Chester, SSP '17]

Red lines are leading SUGRA **tree level** results [Zhou '17; Chester '18]. Lowest operators have the form $S_{IJ}\partial_{\mu_1}\cdots\partial_{\mu_\ell}S^{IJ}$.

$\lambda^2_{(A,2)_j}$ and $\lambda^2_{(A,+)_j}$ from extremal functional

Semishort $(A, 2)_j$ and $(A, +)_j$ OPE coefficients for low spin *j* in terms of $\frac{16}{c\tau}$ from extremal functional:

- Red line is tree level SUGRA result [Chester '18].
- $\lambda^2_{(A,+)_i}$ appears close to linear in $16/c_T$.
- More precision needed.

$\lambda^2_{(A,2)_j}$ and $\lambda^2_{(A,+)_j}$ from extremal functional

Semishort $(A, 2)_j$ and $(A, +)_j$ OPE coefficients for low spin *j* in terms of $\frac{16}{c\tau}$ from extremal functional:

- Red line is tree level SUGRA result [Chester '18].
- $\lambda^2_{(A,+)_i}$ appears close to linear in $16/c_T$.
- More precision needed.

Conclusion

- Can compute OPE coefficients in $\mathcal{N} = 8$ SCFTs with Lagrangian descriptions using supersymmetric localization.
- For ABJM theory, we can reproduce the $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$ term in the flat space 4-graviton scattering amplitude.
- Bootstrap bounds are almost saturated by $\mathcal{N}=8$ SCFTs with holographic duals.

For the future:

- Generalize to other dimensions, other 4-point function, less SUSY. (See [Chester, Perlmutter '18] on 6d as well as Shai Chester's talk & poster.)
- Study other SCFTs from which one can compute scattering amplitudes of gauge bosons on branes. (?)
- Loops in AdS.

Conclusion

- Can compute OPE coefficients in $\mathcal{N} = 8$ SCFTs with Lagrangian descriptions using supersymmetric localization.
- For ABJM theory, we can reproduce the $f_{R^4}(s, t) = \frac{stu}{3 \cdot 2^7}$ term in the flat space 4-graviton scattering amplitude.
- Bootstrap bounds are almost saturated by $\mathcal{N} = 8$ SCFTs with holographic duals.

For the future:

- Generalize to other dimensions, other 4-point function, less SUSY. (See [Chester, Perlmutter '18] on 6d as well as Shai Chester's talk & poster.)
- Study other SCFTs from which one can compute scattering amplitudes of gauge bosons on branes. (?)
- Loops in AdS.