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Motivation

Learn about gravity / string theory / M-theory from CFT.

3d maximally supersymmetric (N = 8) CFTs w/ gravity duals:
explicit Lagrangians; no marginal coupling; SUSY.

Most well-understood example:
M-theory on AdS4 × S7 ⇐⇒ U(N)k × U(N)−k ABJM theory at CS
level k = 1.

Last 10 years: progress in QFT calculations

using supersymmetric localization;

using conformal bootstrap in CFTs.

What do these calculations tell us about M-theory?

Example: S3 partition function of ABJM theory can be written as
an N-dim’l integral. What info about M-theory does it contain?
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M-theory S-matrix

This talk: Reconstruct M-theory S-matrix perturbatively at small
momentum (scatter gravitons and superpartners).

Equivalently, reconstruct the derivative expansion of the M-theory
effective action. Schematically,

S =

∫
d11x

√
g
[
R + Riem4 + · · ·+ (SUSic completion)

]
.

Restrict momenta to be in 4 out of the 11 dimensions.
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From the 4d point of view, we can scatter:
graviton (1);
gravitinos (8);
gravi-photons (28);
gravi-photinos (56);
scalars (70 = 35 + 35)

At leading order in small momentum (i.e. momentum squared),
scattering amplitudes are those in N = 8 SUGRA at tree level.
Amplitude depends on the type of particle, e.g.

ASUGRA, tree(h−h−h+h+) =
〈12〉4[34]4

stu
,

ASUGRA, tree(S1S1S2S2) =
tu
s
,

etc.

but they’re all related by SUSY. (See Elvang & Huang’s book.)
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Momentum expansion

Momentum expansion takes a universal form (independent of the
type of particle):

A = ASUGRA, tree

(
1 + `6pfR4(s, t) + `9pf1-loop(s, t)

+ `12
p fD6R4(s, t) + `14

p fD8R4(s, t) + · · ·
)
.

fD2nR4 = symmetric polyn in s, t ,u of degree n + 3

Known from type II string theory + SUSY [Green, Tseytlin, Gutperle,

Vanhove, Russo, Pioline, . . . ] :

fR4(s, t) =
stu

3 · 27 , fD6R4(s, t) =
(stu)2

15 · 215 .

`10
p fD4R4 allowed by SUSY, but known to vanish.

This talk: Reproduce fR4 from 3d SCFT.
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Flat space limit of CFT correlators

Idea: Flat space scattering amplitudes can be obtained as limit of
CFT correlators [Polchinski ’99; Susskind ’99; Giddings ’99; Penedones ’10;

Fitzpatrick, Kaplan ’11] .

For a CFT3 operator φ(x) with ∆φ = 1,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉conn =
1

x2
12x2

34
g(U,V )

go to Mellin space

g(U,V ) =

∫
ds dt

(4πi)2 U t/2V (u−2)/2Γ2
(

1− s
2

)
Γ2
(

1− t
2

)
Γ2
(

1− u
2

)
M(s, t)

where s + t + u = 4 and U =
x2

12x2
34

x2
13x2

24
, V =

x2
14x2

23
x2

13x2
24

.

From the large s, t limit of M(s, t) one can extract 4d scattering
amplitude A(s, t) [Penedones ’10; Fitzpatrick, Kaplan ’11] .
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To obtain scattering amplitude of graviton + superpartners in
M-theory, look at stress tensor multiplet in ABJM theory (ABJM
theory is a 3d N = 8 SCFT, and so it has so(8)R R-symmetry):

focus on this −→
dimension spin so(8)R couples to

1 0 35c scalars
3/2 1/2 56v gravi-photinos
2 0 35s pseudo-scalars
2 1 28 gravi-photons

5/2 3/2 8v gravitinos
3 2 1 graviton

Task: find the Mellin amplitude M(s, t) corresponding to
〈SIJSKLSMNSPQ〉 by solving superconformal Ward identity [Dolan,

Gallot, Sokatchev ’04] order by order in `2p ∝ N−1/3 ∝ c−2/9
T .

Here, 〈TµνTρσ〉 ∝ cT ∝ N3/2.
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Require: 1) at order `2k
p , M(s, t) should not grow faster than

(k + 1)st power of s, t ,u;
2) right analytic properties to correspond to a bulk tree-level
Witten diagram.

Number of such solutions to Ward identity is:

degree in s, t , u 1 2 3 4 5 6 7 . . .

11D vertex R R4 D4R4 D6R4 . . .

scaling c−1
T c

− 5
3

T (0×)c
− 19

9
T c

− 7
3

T
# of params 1 2 3 4 . . .

(degree 1 in [Zhou ’18] ); degree ≥ 2 in [Chester, SSP, Yin ’18] .)
So:

To determine M(s, t) to order 1/cT we should compute one CFT
quantity.

To determine M(s, t) to order 1/c5/3
T we should compute two CFT

quantities.

Etc.
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CFT quantities

The CFT quantities can be, for instance, squared OPE coefficients
appearing in the superconformal block decomposition.
Schematically,

〈SIJSKLSMNSPQ〉 =
1

x2
12x2

34

∑
N = 8 supermultipletsM

λ2
MGM(U,V ) .

(M is a superconformal multiplet appearing in the S × S OPE.)

Tµν Ward identity gives λ2
stress = 256/cT . Using SUSY tricks, one

can compute [Agmon, Chester, SSP ’17] :

λ2
B,2 =

32
3
− 1024(4π2 − 15)

9π2
1
cT

+ 40960
(

2
9π8

) 1
3 1

c5/3
T

+ · · ·

where “stress” is the stress tensor multiplet, and “(B,2)” is a
1/4-BPS mutliplet appearing in the OPE S × S.
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Precision test of AdS/CFT

Using these two expressions, we determined M(s, t) to order
1/c5/3

T .

The flat space limit implies fR4(s, t) = stu
3·27 , as expected.

This is a precision test of AdS/CFT beyond supergravity!!
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OPE coefficients from SUSic localization

It is hard to calculate correlation functions at separated points
using SUSic localization. See however [Gerkchovitz, Gomis, Ishtiaque,

Karasik, Komargodski, SSP ’16; Dedushenko, SSP, Yacoby ’16] .

How were cT and λ2
(B,2) computed?

From derivatives of the S3 partition function with respect to an
N = 4-preserving mass parameter m, which can be computed
using supersymmetric localization.

(For cT , see also [Chester, Lee, SSP, Yacoby ’14] for another method
based on [Closset, Dumitrescu, Festuccia, Komargodski, Seiberg ’12] .)
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Mass-deformed S3 partition function

For an N = 4-preserving mass deformation of ABJM theory,
ZS3(m) is [Kapustin, Willett, Yaakov ’09] :

ZS3(m) =

∫
dNλdNµeik

∑
i (λ

2
i −µ

2
i )

∏
i<j sinh2(λi − λj) sinh2(µi − µj)∏

i,j cosh(λi − µj + m) cosh(λi − µj)

Small N: can evaluate integral exactly.

Large N: rewrite ZS3(m) as the partition function of non-interacting
Fermi gas of N particles with [Marino, Putrov ’11; Nosaka ’15]

U(x) = log(2 cosh x)−mx , T (p) = log(2 cosh p) .

Resummed perturbative expansion [Nosaka ’15] :

ZS3(m) ∼ Ai (f1(m)N − f2(m))

for some known functions f1(m) and f2(m). (log Z ∝ N3/2)
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Topological sector

3d N = 4 SCFTs have a 1d topological sector [Beem, Lemos, Liendo,

Peelaers, Rastelli, van Rees ’13; Chester, Lee, SSP, Yacoby ’14; Dedushenko, SSP,

Yacoby ’16] defined on a line (0,0, x) in R3.

〈O1(x1) . . .On(xn)〉 depends only on the ordering of xi on the line.

Ops in 1d are 3d 1/2-BPS operators O(~x) placed at ~x = (0,0, x)
and contracted with x-dependent R-symmetry polarizations.

The operators O(x) are in the cohomology of a supercharge
Q = “Q + S′′ cohomology s.t. translations in x are Q-exact.

The topological sector is defined either on a line in flat space or on
a great circle of S3.

In ABJM, construct 1d operators Sα(x) from SIJ , α = 1,2,3. Their
2-pt function depends on cT ; their 4-pt function depends on cT
and λ2

(B,2).
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From ZS3(m) to OPE coefficients

One can show ZS3(m) = ZS1(m), and so derivatives of the ZS3

w.r.t. m corresponds to integrated correlators in the 1d theory.

From 2 derivatives of ZS3 w.r.t. m we can extract cT .

From 4 derivatives of ZS3 w.r.t. m we can extract λ2
(B,2).

So the (resummed) perturbative expansion of cT , λ2
B,2 can be

written in terms of derivatives of the Airy function!

Eliminating N gives

λ2
B,2 =

32
3
− 1024(4π2 − 15)

9π2
1
cT

+ 40960
(

2
9π8

) 1
3 1

c5/3
T

+ · · ·

(Tangent: For 2d bulk dual of the 1d topological sector of ABJM
theory, see [Mezei, SSP, Wang ’17] . The 1d theory is exactly solvable,
and its 2d bulk dual is 2d YM.)
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Beyond fR4?

Can one go beyond reconstructing fR4?

More SUSic localization results for ABJM theory are available: ZS3

as a function of three real mass parameters; partition function on
a squashed sphere, etc.

Cannot use the 1d topological sector in this case, but it is very likely
that this extra data will show fD4R4 = 0 and maybe even determine
fD6R4 . (Work in progress with D. Binder and S. Chester.)

Another approach: conformal bootstrap.

Generally, we obtain bounds on various quantities.

If the bounds are saturated, then we can solve for the CFT data.
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Known N = 8 SCFTs

A few families of N = 8 SCFTs:
A1,A2

B1,B2

k −k

G1 G2

With holographic duals:

ABJMN,1: U(N)1 × U(N)−1 ←→ AdS4 × S7.

ABJMN,2: U(N)2 × U(N)−2 ←→ AdS4 × S7/Z2.

ABJN,2: U(N)2 × U(N + 1)−2 ←→ AdS4 × S7/Z2.

Without known holographic duals:

BLGk : SU(2)k × SU(2)−k .
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Bootstrap bounds [Agmon, Chester, SSP ’17]

Bounds from conformal bootstrap applying to all N = 8 SCFTs.

BLGk

ABJMN,1
int

ABJN

ABJMN,2

ABJM1,1
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16
cT

2

4

6

8

10

λ(B,2)
2

SUGRA (leading large cT ) saturates bootstrap bounds.
Conjecture: ABJMN,1 or ABJMN,2 or ABJN,2 saturate bound at all
N in the limit of infinite precision.

λ2
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3
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9π2
1
cT

+ 40960
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2
9π8k2

) 1
3 1
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T

+ · · · .
Silviu Pufu (Princeton University) 6-26-2018 17 / 20



Bootstrap bounds [Agmon, Chester, SSP ’17]

Bounds from conformal bootstrap applying to all N = 8 SCFTs.

BLGk

ABJMN,1
int

ABJN

ABJMN,2

ABJM1,1

0.2 0.4 0.6 0.8 1.0

16
cT

2

4

6

8

10

λ(B,2)
2

SUGRA (leading large cT ) saturates bootstrap bounds.
Conjecture: ABJMN,1 or ABJMN,2 or ABJN,2 saturate bound at all
N in the limit of infinite precision.

λ2
B,2 =

32
3
− 1024(4π2 − 15)

9π2
1
cT

+ 40960
(

2
9π8k2

) 1
3 1

c5/3
T

+ · · · .
Silviu Pufu (Princeton University) 6-26-2018 17 / 20



Bound saturation =⇒ read off CFT data

On the boundary of the bootstrap bounds, the solution to crossing
should be unique =⇒ can find 〈SIJSKLSMNSPQ〉 and solve for the
spectrum !! [Agmon, Chester, SSP ’17]

lowest spin 0

lowest spin 2

lowest spin 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7
16/cT

1

2

3

4

5

6

Δ

Red lines are leading SUGRA tree level results [Zhou ’17; Chester ’18] .
Lowest operators have the form SIJ∂µ1 · · · ∂µ`SIJ .
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λ2
(A,2)j

and λ2
(A,+)j

from extremal functional

Semishort (A,2)j and (A,+)j OPE coefficients for low spin j in terms of
16
cT

from extremal functional:
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Red line is tree level SUGRA result [Chester ’18] .

λ2
(A,+)j

appears close to linear in 16/cT .

More precision needed.
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Conclusion

Can compute OPE coefficients in N = 8 SCFTs with Lagrangian
descriptions using supersymmetric localization.

For ABJM theory, we can reproduce the fR4(s, t) = stu
3·27 term in the

flat space 4-graviton scattering amplitude.

Bootstrap bounds are almost saturated by N = 8 SCFTs with
holographic duals.

For the future:

Generalize to other dimensions, other 4-point function, less
SUSY. (See [Chester, Perlmutter ’18] on 6d as well as Shai Chester’s
talk & poster.)

Study other SCFTs from which one can compute scattering
amplitudes of gauge bosons on branes. (?)

Loops in AdS.
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