M-theory S-Matrix from 3d SCFT

Silviu S. Pufu, Princeton University

Based on:

- arXiv:1711.07343 with N. Agmon and S. Chester
- arXiv:1804.00949 with S. Chester and X. Yin

Also:

- arXiv:1406.4814, arXiv:1412.0334 with S. Chester, J. Lee, and R. Yacoby
- arXiv:1610.00740 with M. Dedushenko and R. Yacoby

OIST, June 26, 2018

Motivation

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric $(\mathcal{N}=8)$ CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on $\mathrm{AdS}_{4} \times S^{7} \Longleftrightarrow U(N)_{k} \times U(N)_{-k} A B J M$ theory at CS level $k=1$.
- Last 10 years: progress in QFT calculations
- using supersymmetric localization;
- using conformal bootstran in CFTs.
- What do these calculations tell us about M-theory?
- Example: S^{3} partition function of ABJM theory can be written as an N -dim'l integral. What info about M-theory does it contain?

Motivation

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric $(\mathcal{N}=8)$ CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on $A d S_{4} \times S^{7} \Longleftrightarrow U(N)_{k} \times U(N)_{-k}$ ABJM theory at CS level $k=1$.
- Last 10 years: progress in QFT calculations
- using supersymmetric localization;
- using conformal bootstran in CFTs.
- What do these calculations tell us about M-theory?
- Example: S^{3} partition function of ABJM theory can be written as an N -dim'l integral. What info about M-theory does it contain?

Motivation

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric $(\mathcal{N}=8)$ CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on $A d S_{4} \times S^{7} \Longleftrightarrow U(N)_{k} \times U(N)_{-k}$ ABJM theory at CS level $k=1$.
- Last 10 years: progress in QFT calculations
- using supersymmetric localization;
- using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
- Example: S^{3} partition function of ABJM theory can be written as an N-dim'l integral. What info about M-theory does it contain?

Motivation

- Learn about gravity / string theory / M-theory from CFT.
- 3d maximally supersymmetric $(\mathcal{N}=8)$ CFTs w/ gravity duals: explicit Lagrangians; no marginal coupling; SUSY.
- Most well-understood example: M-theory on $\operatorname{AdS}_{4} \times S^{7} \Longleftrightarrow U(N)_{k} \times U(N)_{-k}$ ABJM theory at CS level $k=1$.
- Last 10 years: progress in QFT calculations
- using supersymmetric localization;
- using conformal bootstrap in CFTs.
- What do these calculations tell us about M-theory?
- Example: S^{3} partition function of ABJM theory can be written as an N -dim'l integral. What info about M-theory does it contain?

M-theory S-matrix

- This talk: Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).
- Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

$$
S=\int d^{11} \times \sqrt{g}\left[R+\text { Riem }^{4}+\cdots+(\text { SUSic completion })\right]
$$

- Restrict momenta to be in 4 out of the 11 dimensions.

M-theory S-matrix

- This talk: Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).
- Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

$$
S=\int d^{11} x \sqrt{g}\left[R+\text { Riem }^{4}+\cdots+(\text { SUSic completion })\right]
$$

- Restrict momenta to be in 4 out of the 11 dimensions.

M-theory S-matrix

- This talk: Reconstruct M-theory S-matrix perturbatively at small momentum (scatter gravitons and superpartners).
- Equivalently, reconstruct the derivative expansion of the M-theory effective action. Schematically,

$$
S=\int d^{11} x \sqrt{g}\left[R+\text { Riem }^{4}+\cdots+(\text { SUSic completion })\right]
$$

- Restrict momenta to be in 4 out of the 11 dimensions.
- From the 4d point of view, we can scatter:
- graviton (1);
- gravitinos (8);
- gravi-photons (28);
- gravi-photinos (56);
- scalars $(70=35+35)$
- At leading order in small momentum (i.e. momentum squared), scattering amplitudes are those in $\mathcal{N}=8$ SUGRA at tree level. Amplitude depends on the type of particle, e.g.

etc.
but they're all related by SUSY. (See Elvang \& Huang's book.)
- From the 4 d point of view, we can scatter:
- graviton (1);
- gravitinos (8);
- gravi-photons (28);
- gravi-photinos (56);
- scalars $(70=35+35)$
- At leading order in small momentum (i.e. momentum squared), scattering amplitudes are those in $\mathcal{N}=8$ SUGRA at tree level. Amplitude depends on the type of particle, e.g.

$$
\begin{aligned}
& \mathcal{A}_{\text {SUGRA, tree }}\left(h^{-} h^{-} h^{+} h^{+}\right)=\frac{\langle 12\rangle^{4}[34]^{4}}{s t u} \\
& \mathcal{A}_{\text {SUGRA, tree }}\left(S_{1} S_{1} S_{2} S_{2}\right)=\frac{t u}{s} \\
& \text { etc. }
\end{aligned}
$$

but they're all related by SUSY. (See Elvang \& Huang's book.)

Momentum expansion

- Momentum expansion takes a universal form (independent of the type of particle):

$$
\begin{aligned}
\mathcal{A}=\mathcal{A}_{\text {SUGRA, tree }}(1 & +\ell_{p}^{6} f_{R^{4}}(s, t)+\ell_{p}^{9} f_{1-\mathrm{loop}}(s, t) \\
& \left.+\ell_{p}^{12} f_{D^{6} R^{4}}(s, t)+\ell_{p}^{14} f_{D^{8} R^{4}}(s, t)+\cdots\right)
\end{aligned}
$$

- $f_{D^{2 n} R^{4}}=$ symmetric polyn in s, t, u of degree $n+3$
- Known from type II string theory + SUSY [Green, Tseytin, Gutperle, Vanhove, Russo, Pioline, ...]:

$$
f_{R^{4}}(s, t)=\frac{s t u}{3 \cdot 2^{7}}, \quad f_{D^{6} R^{4}}(s, t)=\frac{(s t u)^{2}}{15 \cdot 2^{15}}
$$

- $\ell_{p}^{10} f_{D^{4} R^{4}}$ allowed by SUSY, but known to vanish.
- This talk: Reproduce $f_{R^{4}}$ from 3d SCFT.

Flat space limit of CFT correlators

- Idea: Flat space scattering amplitudes can be obtained as limit of CFT correlators [Polchinski '99; Susskind '99; Giddings '99; Penedones '10;
Fitzpatrick, Kaplan '11] .
- For a CFT_{3} operator $\phi(x)$ with $\Delta_{\phi}=1$,

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{\mathrm{conn}}=\frac{1}{x_{12}^{2} x_{34}^{2}} g(U, V)
$$

go to Mellin space
$g(U, V)=\int \frac{d s d t}{(4 \pi i)^{2}} U^{t / 2} V^{(u-2) / 2} \Gamma^{2}\left(1-\frac{s}{2}\right) \Gamma^{2}\left(1-\frac{t}{2}\right) \Gamma^{2}\left(1-\frac{u}{2}\right) M(s, t)$
where $s+t+u=4$ and $U=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} 3_{24}^{2}}, V=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$.

- From the large s, t limit of $M(s, t)$ one can extract 4d scattering

Flat space limit of CFT correlators

- Idea: Flat space scattering amplitudes can be obtained as limit of CFT correlators [Polchinski '99; Susskind '99; Giddings '99; Penedones '10;
Fitzpatrick, Kaplan '11] .
- For a CFT_{3} operator $\phi(x)$ with $\Delta_{\phi}=1$,

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle_{\mathrm{conn}}=\frac{1}{x_{12}^{2} x_{34}^{2}} g(U, V)
$$

go to Mellin space
$g(U, V)=\int \frac{d s d t}{(4 \pi i)^{2}} U^{t / 2} V^{(u-2) / 2} \Gamma^{2}\left(1-\frac{s}{2}\right) \Gamma^{2}\left(1-\frac{t}{2}\right) \Gamma^{2}\left(1-\frac{u}{2}\right) M(s, t)$
where $s+t+u=4$ and $U=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} 2_{24}^{2}}, V=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$.

- From the large s, t limit of $M(s, t)$ one can extract $4 d$ scattering amplitude $\mathcal{A}(s, t)$ [Penedones '10; Fitzpatrick, Kaplan '11].
- To obtain scattering amplitude of graviton + superpartners in M-theory, look at stress tensor multiplet in ABJM theory (ABJM theory is a $3 \mathrm{~d} \mathcal{N}=8$ SCFT, and so it has $\mathfrak{s o}(8)_{R}$ R-symmetry):

- Task: find the Mellin amplitude $M(s, t)$ corresponding to $\left\langle S_{I J} S_{K L} S_{M N} S_{P Q}\right\rangle$ by solving superconformal Ward identity [Dolan, Gallot, Sokatchev '04] order by order in $\ell_{p}^{2} \propto N^{-1 / 3} \propto c_{T}^{-2 / 9}$.

Here, $\left\langle T_{\mu \nu} T_{\rho \sigma}\right\rangle \propto c_{T} \propto N^{3 / 2}$.

- Require: 1) at order $\ell_{p}^{2 k}, M(s, t)$ should not grow faster than $(k+1)$ st power of s, t, u;

2) right analytic properties to correspond to a bulk tree-level Witten diagram.

- Number of such solutions to Ward identity is:

degree in s, t, u	1	2	3	4	5	6	7	\ldots
11D vertex	R			R^{4}		$D^{4} R^{4}$	$D^{6} R^{4}$	\cdots
scaling	c_{T}^{-1}			$c_{T}^{-\frac{5}{3}}$		$(0 \times) c_{T}^{-\frac{19}{9}}$	$c_{T}^{-\frac{7}{3}}$	
\# of params	1			2		3	4	\cdots

(degree 1 in [Zhou '18]); degree ≥ 2 in [Chester, SSP, Yin '18] .) So:

- Require: 1) at order $\ell_{p}^{2 k}, M(s, t)$ should not grow faster than $(k+1)$ st power of s, t, u;

2) right analytic properties to correspond to a bulk tree-level Witten diagram.

- Number of such solutions to Ward identity is:

degree in s, t, u	1	2	3	4	5	6	7	\ldots
11D vertex	R			R^{4}		$D^{4} R^{4}$	$D^{6} R^{4}$	\ldots
scaling	c_{T}^{-1}			$c_{T}^{-\frac{5}{3}}$		$(0 \times) c_{T}^{-\frac{19}{9}}$	$c_{T}^{-\frac{7}{3}}$	
\# of params	1			2		3	4	\cdots

(degree 1 in [Zhou '18]); degree ≥ 2 in [Chester, SSP, Yin '18] .) So:

- To determine $M(s, t)$ to order $1 / c_{T}$ we should compute one CFT quantity.
- To determine $M(s, t)$ to order $1 / c_{T}^{5 / 3}$ we should compute two CFT quantities.

CFT quantities

- The CFT quantities can be, for instance, squared OPE coefficients appearing in the superconformal block decomposition. Schematically,

$$
\left\langle S_{I J} S_{K L} S_{M N} S_{P Q}\right\rangle=\frac{1}{x_{12}^{2} x_{34}^{2}} \sum_{\mathcal{N}=8} \lambda_{\mathcal{M}}^{2} \mathcal{G}_{\mathcal{M}}(U, V)
$$

(\mathcal{M} is a superconformal multiplet appearing in the $S \times S$ OPE.)

- $T_{\mu \nu}$ Ward identity gives $\lambda_{\text {stress }}^{2}=256 / c_{T}$. Using SUSY tricks, one can compute [Agmon, Chester, SSP '17]:

$$
\lambda_{B, 2}^{2}=\frac{32}{3}-\frac{1024\left(4 \pi^{2}-15\right)}{9 \pi^{2}} \frac{1}{c_{T}}+40960\left(\frac{2}{9 \pi^{8}}\right)^{\frac{1}{3}} \frac{1}{c_{T}^{5 / 3}}+\cdots
$$

where "stress" is the stress tensor multiplet, and "($B, 2$)" is a 1/4-BPS mutliplet appearing in the OPE $S \times S$.

Precision test of AdS/CFT

- Using these two expressions, we determined $M(s, t)$ to order $1 / c_{T}^{5 / 3}$.
- The flat space limit implies $f_{R^{4}}(s, t)=\frac{s t u}{3 \cdot 2^{7}}$, as expected.
- This is a precision test of AdS/CFT beyond supergravity!!

Precision test of AdS/CFT

- Using these two expressions, we determined $M(s, t)$ to order $1 / c_{T}^{5 / 3}$.
- The flat space limit implies $f_{R^{4}}(s, t)=\frac{s t u}{3 \cdot 2^{7}}$, as expected.
- This is a precision test of AdS/CFT beyond supergravity!!

Precision test of AdS/CFT

- Using these two expressions, we determined $M(s, t)$ to order $1 / c_{T}^{5 / 3}$.
- The flat space limit implies $f_{R^{4}}(s, t)=\frac{s t u}{3 \cdot 2^{7}}$, as expected.
- This is a precision test of AdS/CFT beyond supergravity!!

OPE coefficients from SUSic localization

- It is hard to calculate correlation functions at separated points using SUSic localization. See however [Gerkchovitz, Gomis, Ishtiaque, Karasik, Komargodski, SSP '16; Dedushenko, SSP, Yacoby '16] .

OPE coefficients from SUSic localization

- It is hard to calculate correlation functions at separated points using SUSic localization. See however [Gerkchovitz, Gomis, Ishtiaque, Karasik, Komargodski, SSP '16; Dedushenko, SSP, Yacoby '16] .

How were c_{T} and $\lambda_{(B, 2)}^{2}$ computed?

- From derivatives of the S^{3} partition function with respect to an $\mathcal{N}=4$-preserving mass parameter m, which can be computed using supersymmetric localization.
- (For c_{T}, see also [Chester, Lee, SSP, Yacoby '14] for another method based on [Closset, Dumitrescu, Festuccia, Komargodski, Seiberg '12] .)

Mass-deformed S^{3} partition function

- For an $\mathcal{N}=4$-preserving mass deformation of ABJM theory, $Z_{S^{3}}(m)$ is [Kapustin, Willett, Yaakov '09] :

$$
Z_{S^{3}}(m)=\int d^{N} \lambda d^{N} \mu e^{i k \sum_{i}\left(\lambda_{i}^{2}-\mu_{i}^{2}\right)} \frac{\prod_{i<j} \sinh ^{2}\left(\lambda_{i}-\lambda_{j}\right) \sinh ^{2}\left(\mu_{i}-\mu_{j}\right)}{\prod_{i, j} \cosh \left(\lambda_{i}-\mu_{j}+m\right) \cosh \left(\lambda_{i}-\mu_{j}\right)}
$$

- Small N : can evaluate integral exactly.
- Large N : rewrite $Z_{S^{3}}(m)$ as the partition function of non-interacting Fermi gas of N particles with [Marino, Putrov '11; Nosaka '15]

$$
U(x)=\log (2 \cosh x)-m x, \quad T(p)=\log (2 \cosh p) .
$$

Resummed perturbative expansion

$$
Z_{S^{3}}(m) \sim \Delta i\left(f_{1}(m) N-f_{2}(m)\right)
$$

Mass-deformed S^{3} partition function

- For an $\mathcal{N}=4$-preserving mass deformation of ABJM theory, $Z_{S^{3}}(m)$ is [Kapustin, Willett, Yaakov '09] :

$$
Z_{S^{3}}(m)=\int d^{N} \lambda d^{N} \mu e^{i k \sum_{i}\left(\lambda_{i}^{2}-\mu_{i}^{2}\right)} \frac{\prod_{i<j} \sinh ^{2}\left(\lambda_{i}-\lambda_{j}\right) \sinh ^{2}\left(\mu_{i}-\mu_{j}\right)}{\prod_{i, j} \cosh \left(\lambda_{i}-\mu_{j}+m\right) \cosh \left(\lambda_{i}-\mu_{j}\right)}
$$

- Small N : can evaluate integral exactly.
- Large N : rewrite $Z_{S^{3}}(m)$ as the partition function of non-interacting Fermi gas of N particles with [Marino, Putrov '11; Nosaka '15]

$$
U(x)=\log (2 \cosh x)-m x, \quad T(p)=\log (2 \cosh p)
$$

Resummed perturbative expansion [Nosaka '15]:

$$
Z_{S^{3}}(m) \sim \operatorname{Ai}\left(f_{1}(m) N-f_{2}(m)\right)
$$

for some known functions $f_{1}(m)$ and $f_{2}(m) .\left(\log Z \propto N^{3 / 2}\right)$

Topological sector

- 3d $\mathcal{N}=4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP, Yacoby '16] defined on a line $(0,0, x)$ in \mathbb{R}^{3}.
- $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle$ depends only on the ordering of x_{i} on the line.
- Ops in 1d are 3d 1/2-BPS operators $\mathcal{O}(\vec{x})$ placed at $\vec{x}=(0,0, x)$ and contracted with x-dependent R-symmetry polarizations.
- The onerators $\mathcal{O}(x)$ are in the cohomology of a sunercharge $\mathbb{Q}=$ " $Q+S^{\prime \prime}$ cohomology s.t. translations in x are \mathbb{Q}-exact.
- The topological sector is defined either on a line in flat space or on a great circle of S^{3}.
- In ABJM, construct 1d operators $S_{\alpha}(x)$ from $S_{I J}, \alpha=1,2,3$. Their 2-pt function depends on c_{T}; their 4-pt function depends on C_{T} and $\lambda_{B, 2)}^{2}$

Topological sector

- 3d $\mathcal{N}=4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo,

Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP,
Yacoby '16] defined on a line $(0,0, x)$ in \mathbb{R}^{3}.

- $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle$ depends only on the ordering of x_{i} on the line.
- Ops in 1d are 3d 1/2-BPS operators $\mathcal{O}(\vec{x})$ placed at $\vec{x}=(0,0, x)$ and contracted with x-dependent R-symmetry polarizations.
- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $\mathbb{Q}=" Q+S^{\prime \prime}$ cohomology s.t. translations in x are \mathbb{Q}-exact.
- The topological sector is defined either on a line in flat space or on a great circle of S^{3}.

Topological sector

- 3d $\mathcal{N}=4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo,

Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP,
Yacoby '16] defined on a line $(0,0, x)$ in \mathbb{R}^{3}.

- $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle$ depends only on the ordering of x_{i} on the line.
- Ops in 1d are 3d $1 / 2$-BPS operators $\mathcal{O}(\vec{x})$ placed at $\vec{x}=(0,0, x)$ and contracted with x-dependent R-symmetry polarizations.
- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $\mathbb{Q}=" Q+S^{\prime \prime}$ cohomology s.t. translations in x are \mathbb{Q}-exact.
- The topological sector is defined either on a line in flat space or on a great circle of S^{3}.
- In ABJM, construct 1d operators $S_{\alpha}(x)$ from $S_{I J}, \alpha=1,2,3$. Their

Topological sector

- 3d $\mathcal{N}=4$ SCFTs have a 1d topological sector [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees '13; Chester, Lee, SSP, Yacoby '14; Dedushenko, SSP, Yacoby '16] defined on a line $(0,0, x)$ in \mathbb{R}^{3}.
- $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle$ depends only on the ordering of x_{i} on the line.
- Ops in 1d are 3d 1/2-BPS operators $\mathcal{O}(\vec{x})$ placed at $\vec{x}=(0,0, x)$ and contracted with x-dependent R-symmetry polarizations.
- The operators $\mathcal{O}(x)$ are in the cohomology of a supercharge $\mathbb{Q}=" Q+S^{\prime \prime}$ cohomology s.t. translations in x are \mathbb{Q}-exact.
- The topological sector is defined either on a line in flat space or on a great circle of S^{3}.
- In ABJM, construct 1d operators $S_{\alpha}(x)$ from $S_{I J}, \alpha=1,2,3$. Their 2-pt function depends on c_{T}; their 4-pt function depends on c_{T} and $\lambda_{(B, 2)}^{2}$.

From $Z_{S^{3}}(m)$ to OPE coefficients

- One can show $Z_{S^{3}}(m)=Z_{S^{1}}(m)$, and so derivatives of the $Z_{S^{3}}$ w.r.t. m corresponds to integrated correlators in the 1d theory.
- From 2 derivatives of $Z_{S^{3}}$ w.r.t. m we can extract c_{T}.
- From 4 derivatives of $Z_{S^{3}}$ w.r.t. m we can extract $\lambda_{(B, 2)}^{2}$.
- So the (resummed) perturbative expansion of $C_{T}, \lambda_{B, 2}^{2}$ can be written in terms of derivatives of the Airy function!
- Eliminating N gives

- (Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang '17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)

From $Z_{S^{3}}(m)$ to OPE coefficients

- One can show $Z_{S^{3}}(m)=Z_{S^{1}}(m)$, and so derivatives of the $Z_{S^{3}}$ w.r.t. m corresponds to integrated correlators in the 1d theory.
- From 2 derivatives of $Z_{S^{3}}$ w.r.t. m we can extract c_{T}.
- From 4 derivatives of $Z_{S^{3}}$ w.r.t. m we can extract $\lambda_{(B, 2)}^{2}$.
- So the (resummed) perturbative expansion of $c_{T}, \lambda_{B, 2}^{2}$ can be written in terms of derivatives of the Airy function!
- Eliminating N gives

$$
\lambda_{B, 2}^{2}=\frac{32}{3}-\frac{1024\left(4 \pi^{2}-15\right)}{9 \pi^{2}} \frac{1}{c_{T}}+40960\left(\frac{2}{9 \pi^{8}}\right)^{\frac{1}{3}} \frac{1}{c_{T}^{5 / 3}}+\cdots
$$

From $Z_{S^{3}}(m)$ to OPE coefficients

- One can show $Z_{S^{3}}(m)=Z_{S^{1}}(m)$, and so derivatives of the $Z_{S^{3}}$ w.r.t. m corresponds to integrated correlators in the 1d theory.
- From 2 derivatives of $Z_{S^{3}}$ w.r.t. m we can extract c_{T}.
- From 4 derivatives of $Z_{S^{3}}$ w.r.t. m we can extract $\lambda_{(B, 2)}^{2}$.
- So the (resummed) perturbative expansion of $c_{T}, \lambda_{B, 2}^{2}$ can be written in terms of derivatives of the Airy function!
- Eliminating N gives

$$
\lambda_{B, 2}^{2}=\frac{32}{3}-\frac{1024\left(4 \pi^{2}-15\right)}{9 \pi^{2}} \frac{1}{c_{T}}+40960\left(\frac{2}{9 \pi^{8}}\right)^{\frac{1}{3}} \frac{1}{c_{T}^{5 / 3}}+\cdots
$$

- (Tangent: For 2d bulk dual of the 1d topological sector of ABJM theory, see [Mezei, SSP, Wang '17]. The 1d theory is exactly solvable, and its 2d bulk dual is 2d YM.)

Beyond $f_{R^{4}}$?

- Can one go beyond reconstructing $f_{R^{4}}$?
- More SUSic localization results for ABJM theory are available: $Z_{S^{3}}$ as a function of three real mass parameters; partition function on a squashed sphere, etc.
- Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^{4} R^{4}}=0$ and maybe even determine $f_{D^{6} R^{4}}$. (Work in progress with D. Binder and S. Chester.)
- Another approach: conformal bootstrap.
- Generally, we obtain bounds on various quantities.
- If the bounds are saturated, then we can solve for the CFT data.

Beyond $f_{R^{4}}$?

- Can one go beyond reconstructing $f_{R^{4}}$?
- More SUSic localization results for ABJM theory are available: $Z_{S^{3}}$ as a function of three real mass parameters; partition function on a squashed sphere, etc.
- Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^{4} R^{4}}=0$ and maybe even determine $f_{D^{6} R^{4}}$. (Work in progress with D. Binder and S. Chester.)
- Another approach: conformal bootstrap.
- Generally, we obtain bounds on various quantities.
- If the bounds are saturated, then we can solve for the CFT data.

Beyond $f_{R^{4}}$?

- Can one go beyond reconstructing $f_{R^{4}}$?
- More SUSic localization results for ABJM theory are available: $Z_{S^{3}}$ as a function of three real mass parameters; partition function on a squashed sphere, etc.
- Cannot use the 1d topological sector in this case, but it is very likely that this extra data will show $f_{D^{4} R^{4}}=0$ and maybe even determine $f_{D^{6} R^{4}}$. (Work in progress with D. Binder and S. Chester.)
- Another approach: conformal bootstrap.
- Generally, we obtain bounds on various quantities.
- If the bounds are saturated, then we can solve for the CFT data.

Known $\mathcal{N}=8$ SCFTs

A few families of $\mathcal{N}=8$ SCFTs:

- With holographic duals:
- $\mathrm{ABJM}_{N, 1}: U(N)_{1} \times U(N)_{-1} \quad \longleftrightarrow \quad A d S_{4} \times S^{7}$.
- $\mathrm{ABJM}_{N, 2}: U(N)_{2} \times U(N)_{-2} \quad \longleftrightarrow \quad A d S_{4} \times S^{7} / \mathbb{Z}_{2}$.
- $\mathrm{ABJ}_{N, 2}: U(N)_{2} \times U(N+1)_{-2} \quad \longleftrightarrow \quad A d S_{4} \times S^{7} / \mathbb{Z}_{2}$.
- Without known holographic duals:
- $\mathrm{BLG}_{k}: S U(2)_{k} \times S U(2)_{-k}$.

Bootstrap bounds [Agmon, Chester, SSP '17]

- Bounds from conformal bootstrap applying to all $\mathcal{N}=8$ SCFTs.

- SUGRA (leading large c_{T}) saturates bootstrap bounds.
- Conjecture: $\mathrm{ABJM}_{N, 1}$ or $\mathrm{ABJM}_{N, 2}$ or $\mathrm{ABJ}_{N, 2}$ saturate bound at all N in the limit of infinite precision.

Bootstrap bounds [Agmon, Chester, SSP '17]

- Bounds from conformal bootstrap applying to all $\mathcal{N}=8$ SCFTs.

- SUGRA (leading large c_{T}) saturates bootstrap bounds.
- Conjecture: $\mathrm{ABJM}_{N, 1}$ or $\mathrm{ABJM}_{N, 2}$ or $\mathrm{ABJ}_{N, 2}$ saturate bound at all N in the limit of infinite precision.

Bound saturation \Longrightarrow read off CFT data

- On the boundary of the bootstrap bounds, the solution to crossing should be unique \Longrightarrow can find $\left\langle S_{I J} S_{K L} S_{M N} S_{P Q}\right\rangle$ and solve for the spectrum !! [Agmon, Chester, SSP '17]

Red lines are leading SUGRA tree level results [Zhou '17; Chester '18]. Lowest operators have the form $S_{I J} \partial_{\mu_{1}} \cdots \partial_{\mu_{\ell}} S^{I J}$.
$\lambda_{(A, 2)_{j}}^{2}$ and $\lambda_{(A,+)_{j}}^{2}$ from extremal functional
Semishort $(A, 2)_{j}$ and $(A,+)_{j}$ OPE coefficients for low spin j in terms of $\frac{16}{c_{T}}$ from extremal functional:

- Red line is tree level SUGRA result [Chester '18].
- $\lambda_{(A,+)_{j}}^{2}$ appears close to linear in $16 / c_{T}$.
- More precision needed.
$\lambda_{(A, 2)_{j}}^{2}$ and $\lambda_{(A,+)_{j}}^{2}$ from extremal functional
Semishort $(A, 2)_{j}$ and $(A,+)_{j}$ OPE coefficients for low spin j in terms of $\frac{16}{c_{T}}$ from extremal functional:

- Red line is tree level SUGRA result [Chester '18].
- $\lambda_{(A,+)_{j}}^{2}$ appears close to linear in $16 / c_{T}$.
- More precision needed.

Conclusion

- Can compute OPE coefficients in $\mathcal{N}=8$ SCFTs with Lagrangian descriptions using supersymmetric localization.
- For ABJM theory, we can reproduce the $f_{R^{4}}(s, t)=\frac{s t u}{3 \cdot 2^{7}}$ term in the flat space 4-graviton scattering amplitude.
- Bootstrap bounds are almost saturated by $\mathcal{N}=8$ SCFTs with holographic duals.

For the future:

- Generalize to other dimensions, other 4-point function, less SUSY. (See [Chester, Perlmutter '18] on 6d as well as Shai Chester's talk \& poster.)
- Study other SCFTs from which one can compute scattering amplitudes of gauge bosons on branes. (?)

Conclusion

- Can compute OPE coefficients in $\mathcal{N}=8$ SCFTs with Lagrangian descriptions using supersymmetric localization.
- For ABJM theory, we can reproduce the $f_{R^{4}}(s, t)=\frac{s t u}{3 \cdot 2^{7}}$ term in the flat space 4-graviton scattering amplitude.
- Bootstrap bounds are almost saturated by $\mathcal{N}=8$ SCFTs with holographic duals.

For the future:

- Generalize to other dimensions, other 4-point function, less SUSY. (See [Chester, Perlmutter '18] on 6d as well as Shai Chester's talk \& poster.)
- Study other SCFTs from which one can compute scattering amplitudes of gauge bosons on branes. (?)
- Loops in AdS.

