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Goal: systematically classify CB geometries
to constrain possible 4d N = 2 QFTs

Main problem: what kinds of singularities
in the CB geometry are allowed?
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Coulomb branch (CB) basics

CB is a component of the moduli space of vacua of a 4d N = 2
supersymmetric (non-gravitational) QFT with massless N = 2 U(1)
gauge fields.
The kinetic terms of the effective action of the massless complex
scalars, Φ, in the U(1) gauge multiplets gives the CB a metric
structure. At its metrically smooth points N = 2 supersymmetry gives
it a special Kähler (SK) structure. At these points r := dimC(CB) is
its rank, and the low energy gauge group is U(1)r .
Each point is a distinct vacuum coordinatized by the vevs u = 〈Φ〉 and
nearby vacua are at finite distances: the CB is metrically complete and
its metric topology coincides with its continuous topology.
The metric is non-analytic ("singular") at vacua where charged states
become massless. There need not be a singularity in the complex or
topological manifold structures on the CB at the metric singularities.
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Some assumptions

CB geometry at metric infinity (large vevs) reflect UV behavior of QFT.

Assume: large-distance asymptotics of CB are scale-invariant.

So these CBs can come from QFTs which flow from a UV f.p., which we
assume is a SCFT.

UV fp

IR fp

m

⇒ Our classification of CB geometries will constrain N = 2 SCFTs.

Assume: singular locus is a complex-analytic set.

More assumptions just to get started: (will try to lift them later)

Assume: rank(CB) = 1.

Assume: CB "planar": CB 'C C.

Assume: No interacting "rank-0" SCFTs.

⇒ finite number of singular points
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Some assumptions
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Scaling forms of singularities

SK structure and unitarity (∆(u) ≥ 1) ⇒
Possible singularities classified by conjugacy class of EM duality
SL(2,Z) monodromy [Mγ ].
Metric can have conical singularity with opening angle 2π/∆(u) plus
logarithmic corrections.

γ

I0 II III IV I ∗0 IV ∗ III ∗ II ∗

∆(u) 1 6/5 4/3 3/2 2 3 4 6

[Mγ ] I (ST )−1 S−1 (ST )−2 −I (ST )2 S ST

γ

In I ∗n
∆(u) 1 2

[Mγ ] T n −T n

(n > 0, not scale-invariant)
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SK deformations

SK defo

Complex deformations of scale invariant geometries which preserve an
SK strucure are characterized by the patterns of splitting of the UV
singularity which preserve the total EM monodromy ⇒ many possible
patterns.
Exists [SW’94,MN’96] maximal deformations X → {I1n}, which are
families of CB geometries depending on complex parameters
m ∈Mmax ∼ Cf

All other deformations are restrictions of these maximal families to
certain subspaces M ⊂Mmax [Caorsi Cecotti 1803.00531]
But: the IR physics of sub-maximal deformations can be qualitatively
different from that of the maximal deformation, so we should
distinguish them as inequivalent theories!
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"Frozen" IR fixed points

Example:
In singularity arises from an IR free U(1) gauge theory with n q = ±1
massless hypermultiplets.
This has n−1 relative masses = deformations splitting In → {I1n}.
But In singularity also arises from U(1) with a single q = ±

√
n hyper.

This doesn’t have a relative mass deformation ⇒ "frozen singularity".
This is familiar already in the simplest lagrangian example:

SU(2) gauge theory with Nf = 4 ⇒ I ∗0 → {I16}
SU(2) with Nadj = 1 ⇒ I ∗0 → {I12, I4}, found by restricting parameters

Constrained by Dirac quantization: the set {√ni} commensurate ⇒ ...

28 possible rank-1 planar CB geometries for SCFTs
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CB geometry and flavor symmetry

The global flavor symmetry, F , of a submaximal deformation 6⊂ Fmax,
the flavor symmetry of the maximal deformation.

This is because F is not unambiguously determined by a deformation
family of CB geometries: gives only a complex reflection group Γ and
a flavor charge lattice Λ.
This allows a finite number of possible F st Weyl(F ) ⊂ Γ and root
lattice ΛF ⊂ Λ with [Λ : ΛF ] <∞.
Some of this F ambiguity lifted by demanding RG flow consistency:

F0 F1

F2 F3

m0
m′0

m1
m2

do assumed assignments of Fi to f.p.s
match breakings due to mi ∈ adj(Fi )?

For one of the 28 geometries, this constraint has no solutions:
it is ruled out as inconsistent
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Rank-0 SCFTs

This classification depended on the interpretation of the In and I ∗n
singularities as IR free gauge theories in order to use the Dirac
quantization condition.

If there existed interacting rank-0 SCFTs with global flavor symmetries
F , then by weakly gauging a U(1) or SU(2) ⊂ F gives In, I ∗n
singularities which are non-free fixed points

⇒ our classification collapses (hundreds of possible distinct rank-1
planar CB geometries).

This was why we assumed no rank-0 SCFTs.

Conversely: the success of our classification could be evidence for their
non-existence.
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Comparison to rank-1 SCFTs

Evaluate success by comparing to known rank-1 SCFTs.

"Known" = there is evidence for their existence from:
lagrangian theories,
S-class constructions,
S-fold constructions,
RG flows from the above, and
gauging of certain discrete symmetries of above.

We find:
Of the 27 consistent CB geometries, 25 are associated to known CFTs.
There are four cases where the same CB geometry corresponds to 2
different SCFTs.

So, AFAIK:

SCFT → CB geometry map is neither 1-to-1 nor onto.
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CB chiral rings

The assumption that CB 'C C is equivalent to the chiral ring, OCB, of the
CB operators in the UV SCFT being freely generated: OCB = C[u].

A singularity in the CB complex structure then gives a non-freely-generated
CB chiral ring. For example,

OCB = C[a, b]/〈a3 − b2〉.

In terms of the normalizing coordinate,

u = a1/2 = b1/3,

the CB looks like the complex u-plane, but with a complex singularity
hidden at the origin.

Now a = 〈Φa〉, b = 〈Φb〉 are vevs of SCFT local operators, but u is not:

Can have ∆(u) < 1 without violating the SCFT unitarity bound.
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Non-freely-generated CB chiral rings?

Without the ∆(u) ≥ 1 constraint, there are now an infinite number of SK
singular geometries for each EM monodromy conjugacy class, with negative
curvatures localized at u = 0.

⇒ Infinitely many possible consistent rank-1 CB geometries.

There are no known examples of rank-1 SCFTs with a non-freely-generated
CB chiral ring.

Can show [PCA,Lü,Martone 1704.05110] unitarity & SK ⇒ if SCFT CB
has a complex singularity, then under any relevant deformation a complex
singularity persists.

Ff such theories exist, they form a separate set under RG flows.
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Rank > 1?

Much less is known. 2 notable results:
[PCA,Martone 1801.06554, 1804.03152]

Can construct (lagrangian, N = 4!) SCFTs with CB complex
singularities by discrete gauging.

CB chiral ring is not freely-generated.
In these examples, CBs are normal varieties (unlike rank-1 singular
varieties), and no negative curvatures.
Also: [Bourget, Pini, Rodriguez-Gómez 1804.00118].

Can compute the (finite, rational) set of allowed CB scaling
dimensions for any rank r ≥ 2.

Assumes CB 'C Cr .
Also: [Caorsi, Cecotti 1801.04542].

In progress: exploring the tight structure tying stratified topology of the
locus of metric singularities to the set of EM duality monodromies around
these singularities.
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End

Thanks!
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