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Characterization of classical chaos

* Sensitivity to a small perturbation.
Lyapunov exponent A >0.
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Interesting connection to quantum gravity = ¢z =



Lyapunov exponents

(Lyapunov spectrum)



Lyapunov Spectrum in Classical Chaos

* Classical phase space is multi-dimensional.

* Perturbation can grow or shrink to various directions.
z = (x,p)

o=

Lij(t) = [MT(t)M(t)]

singular value si(t)

ii Ml;ki(t)Mkj (t) eigenvalue sj(t)?

finite-time Lyapunov exponents )\i(t) — % log Si(t)



Largest Exponent Is not enough

Which is more chaotic?



Coarse-grained entropy and
Kolmogorov-Sinal Entropy

# of cells to cover the region ~ {Ioexp()\t)
>

Coarse-grained entropy

= log[# of cells to cover the region]

~ (sum of positive A\) x t

KS entropy = (sum of positive A)

= entropy production rate



Largest Exponent Is not enough

Which is more chaotic?

Mi++Ao+...+A1000=100 A++Ao+...+A1000=1000



Bigger black hole is colder.

Bigger black hole is less chaotic?



DO-brane matrix model
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Similar calculation is doable at low-T and also for other theories (Berkowitz-MH-Maltz 2016)
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Plan

* Universality of classical Lyapunov spectrum
MH, Shimada, Tezuka, PRE 2018

* Universality of quantum Lyapunov spectrum

Gharibyan, MH, Swingle, Tezuka, in progress



L yapunov Spectrum
z = (z,p)

o

— singular value si(t)

Lij(t) = [MT(t)M(t)],. = My;(t) My, (1)
~ eigenvalue si(t)?

1
finite-time Lyapunov exponents )\Z (t) — z lOg Sj (t)



L yapunov Spectrum

02;(t)
02;(0)
02;(t) 0zp(t — At) 0z, (Al)

M;;(t)

Szn(t — At) 0zt —2At)  62;(0)
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Easily to calculate with good precision



DO-brane matrix model

negligible at high-T

1 _ _
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2912/M
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black hole

in IlA string equivalent |DO0-brane matrix model

high-T = stringy’ high-T = classical

string & ‘ BH



Gur Ari-MH-Shenker, JHEP2016
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RMT vs Classical Chaos

® The correlation of the finite-time Lyapunov

exponents may have a universal behavior?
(Some hints found in the previous study by Gur-Ari, MH, Shenker)

AN < A < -+ < Ay
Si = Ai41 — As

(different from s; = exp(Ait), sorry for using the same letter!)

® N— o0 before t— o

(In chaos community, often t—= is taken first.)



GOE-distribution at any time
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with a mass term (—no gravity interpretation),
GOE is gone, at t=0.
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Normalized distribution P(s)
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But GOE is back at later time
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Summary of numerical observations

Universality beyond nearest-neighbor can be checked.
(Spectral Form Factor)

DO-brane matrix model — RMT already t=0

Maybe a special property of quantum gravitational systems?

Other systems — not RMT at t=0, but gradually

converges to RMT.
Likely to be a universal property in classical chaos.
Generalization to quantum theory?

So far we have looked at only the bulk of the spectrum;
not the edge.



Early-time universality in quantum chaos

Gharibyan, MH, Swingle, Tezuka, in progress



 There is no consensus for the definition of ‘quantum
Lyapunov spectrum’

e Let's try the simplest choice:

My(0) = 520 My = V7T [5(1). T,(0)

Lij(t) = My, () My;(t) L (t) = (o My (t) My (1) |9)

1
Ai (t) — ; lOg o (t) Mij (t)|@) grows exponentially

<¢‘Mm (t)|@) cannot capture the growth



SYK model
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maximally chaotic
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Lyapunov growth
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Lyapunov growtn
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RM T behavior

- K> 0 — chaotic at high energy, non-chaotic at low energy

(Garcia-Garcia, Loureiro, Romero-Bermudez, Tezuka, 2017)

> Our numerical data suggests:

Chaotic states & RMT

non-chaotic states = Poisson

> Brownian circuit version is consistent with this interpretation.



Spin chain (XXZ model)

st'te
2 | Wi
H = ~0i0i4+1 02

4 2
- / \
XXX model random magnetic field

—w < w; < 4w

 Ergodic at small w
e Many-body localized (MBL) at large w

A

M;; = lo4,i(t),0- ;(0)]



Spin chain (XXZ model)
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Spin chain (XXZ model)
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RMT vs Lyapunov spectrum in XXZ model
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RMT vs Lyapunov spectrum in XXZ model
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Summary of numerical observations

e (Classical chaos

DO matrix model — ‘strongly’ universal
Other chaotic systems — universal

e Quantum chaos

SYK — ‘strongly’ universal
Other chaotic systems — universal
MBL — not universal (Poisson-like)

* Lyapunov growth can be seen precisely.



Conclusion & Outlook

> The largest Lyapunov exponent is not enough.

> Lyapunov spectrum captures physics more precisely.

> New universality.

> Black hole is (probably) special.

> What is the mechanism?

How can we formulate the spectrum in gravity side?
Relation to the late time universality (energy spectrum)?
‘KS entropy’ vs EE growth rate?

Generalization of the chaos bound to KS entropy?



