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Analyzing a Lagrangian QFT

Semiclassical physics, mostly in the UV (reliable,
straightforward, but can be subtle)

e Global symmetry and its ‘t Hooft anomalies

 Weakly coupled limits: flat directions, small
parameters, ...

Quantum physics in the IR (mostly conjectural)

e Consistency with the global symmetry (including ‘t
Hooft anomalies) and the various semiclassical limits

e Approximate methods: lattice, bootstrap, €, 1/N, ...
* Integrability
e String constructions



QED; [Many references using various methods]

Simple, characteristic example, demonstrating surprising
phenomena. Many applications.

* U(1) gauge field a,
* Ny fermions ! with charges g; and masses m;
A bare Chern-Simons term.
— Label the theory as U(1); with a parameter k.
— When all the fermions are massive, at low energies
aTQFT U(1)g,  with ko, =k + %Zi sign(m;)q;.
Since k;,y, € 7,
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Global symmetries

Charge-conjugation C: a, = —a,

(with appropriate action on the fermions)

U(1)y, m = 0 time-reversal T: ay(t,x) = ayg(—t, x)
a;(t,x) = —a;(=t,x)

(with appropriate action on the fermions)

Standard algebra on all the fundamental fields

TC = CT
T2 = (—1)F
(€T)? = (-1)"

For equal charges and masses more symmetries, e.g.
SU(Ny).



Global magnetic (topological) symmetry

o U(1),, symmetry: j* = %ewpavap.
 The charged operators are monopole operators (like
a disorder operator).

— Remove a point from spacetime and specify
boundary conditions around it.

e Massless fermions have zero modes, which can lead
to “funny” quantum numbers.



Global magnetic (topological) symmetry

In many applications, the magnetic symmetry is
approximate or absent

* |n lattice constructions

 When the gauge U(1) is embedded at higher energies
in @ non-Abelian gauge group

 When the gauge U(1) is emergent

* |n the generalization of the gauge U(1) = SO(2) to
SO(N) with higher N (only a magnetic Z, symmetry).

It is natural to break U(1),, explicitly by adding a
monopole operator to the Lagrangian.



Example: U(1)g, N = 1 withq =1

k€Z+1
2

e Since k cannot vanish, T is violated (parity anomaly).

e All gauge invariant polynomials in the fundamental
fields are bosons.

e All gauge invariant monopole operators are bosons.

— U(1)1 simplest monopole operator has spin 0
2

— U(1)s simplest monopole operator has spin 1
2



Example: U(1)o, N = 2 withq =1
[Cordova, Hsin, NS]

All gauge invariant polynomials in the fundamental fields
are bosons with integer flavor (isospin) SU(2).

All gauge invariant monopole operators are bosons with

flavor SU(2) isospin = % mod 1.

On a single monopole 7% = —1. More generally,

T2 =(CT)? =(—-1)M
rather than the standard 74 = (CT)? = (=1)f = +1.
Related, but distinct statements in [Wang, T. Senthil;

Metlitski, Fidkowski, Chen, Vishwanath; Witten] and see also
Hsin’s poster.



Examples: U(1)g, Nr = 1 with g = 2
[Cordova, Hsin, NS]

All gauge invariant polynomials in the fundamental
fields are bosons.

All gauge invariant monopole operators have

spin = % mod 1, i.e.

(DY = (D"
— In the previous example “fractional” isospin. Here
“fractional” spin.

Standard T -symmetry
T2 = (—1DF



Break the magnetic U(1) symmetry
[Cordova, Hsin, NS; Gomis, Komargodski, NS]

 Add to the Lagrangian a charge 2 monopole operator.

— Cannot add a charge 1 monopole — it is a fermion.
e |t breaks the

— magnetic symmetry U(1)y = Z,: (—1)M
— J-symmetry

e But it preserves another time-reversal symmetry (a
subgroup of the original symmetry)

LTT
T'=Te2M
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Break the magnetic U(1) symmetry
[Cordova, Hsin, NS; Gomis, Komargodski, NS]
Ty
T' ' =Te2

e |ts algebra is non-standard

T'¢ = CeT'(-1)M
(€T")2 = (=DM = (-1)F
(T)2=1%# (-1)F

C and 7' do not commute.

T' is not a conventional time-reversal symmetry, but
CT' is.
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What is the long distance behavior?

* What are the phases?
— Gapped? Topological?
— Symmetry breaking?

 What happens at the phase transitions? First or
second order?

— And if second order, free or interacting?
* |tis clear for large |m|

U(l)kl_ow P ? ............................... " U(l)k+
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CONJECTURES
AHEAD



Vary m at large |k| or at large N¢

Large k. Essentially free fermions with a modified
Gauss law constraint

Large N¢. Second-order transition as a function of
the fermion mass m [Appelquist, Nash, Wijewardhanal]

Conjecture that this is the case for all k, g, and N¢.

Second order transition atm = 0 y



U(1)k, Ne.= 1 with charge one (q = 1)

U(1),/, flows to the O(2) Wilson-Fisher fixed point

[Chen, Fisher, Wu; Barkeshli, McGreevy; NS, T. Senthil, Wang,
Witten; Karch, Tong]

 The spin-zero monopole operator of the gauge theory
is the order parameter of the O(2) model.

e Emergent T-symmetry in the IR

U(1)3/, flows to a fixed point with SO(3) symmetry
[Aharony, Benini, Hsin, NS; Benini, Hsin, NS]

 The spin-one monopole operator of the gauge theory
becomes a conserved current in 0(2) —» S0(3).

e Several dual bosonic and fermionic descriptions
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[Xu, You; Karch, Tong; Hsin, NS; Benini, Hsin, NS; Wang,
Nahum, Metlitski, Xu, T. Senthil]

e Microscopically: global U(2), C (they do not
commute), and T'-symmetry

— J and CJ" have a non-standard algebra
T2 =(CT)? =(-1)M
 Conjectured IR behavior: fixed point with enhanced
global 0(4) symmetry
* Dual fermionic description: U(1), with Ny = 2

— Its SU(2) flavor symmetry includes the original
U(1),,, and vice versa.
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U(1)o, Nf = 2 withq = 1
[Benini, Hsin, NS; Komargodski, NS]

Break the magnetic symmetry by adding to the Lagrangian

a double monopole operator

* This explicitly breaks the flavor SU(2) — U(1) and the
magnetic U(1),, — Z,.

* For some range of m the remaining flavor U(1)
symmetry is spontaneously broken.

— The UV theory is massive, but the IR theory is gapless!

Goldstone boson

m<0 m > 0
0 (2) Wilson-Fisher fixed points 17




U(1)o, Nr = 1 with q = 2
[Cordova, Hsin, NS]

* Flows to a free Dirac fermion y and a decoupled
U(1), TQFT

— Similar, but not identical to [Son; Wang, T. Senthil;
Metlitski, Vishwanath; NS, T. Senthil, Wang, Witten].

e The monopole operator in the UV becomes the free
fermion y in the IR.

 The Wilson line with charge 1 in the UV is described
as the Wilson line of U(1), (semion).

18



Break the magnetic U(1) symmetry
[Cordova, Hsin, NS; Gomis, Komargodski, NS]

Add to the Lagrangian a charge 2 monopole operator.
LTt

e |tpreserves T' = Te2™ with a nonstandard algebra

* Inthe IR it splits the fixed point with a massless Dirac
fermion to two points with massless Majorana fermions

U(1), U(1), U(1),

m<O0 \ f m> 0

Massless Majorana fermions .




Summary

QED,: U(1);, gauge theory with charged fermions.

e Subtle global symmetry, especially in the action on
monopoles

— Fractional (global symmetry) charges and spins
— Unusual algebras involving C and T

e Conjectures about the IR behavior of these systems
— Enhanced global symmetry
— Dual descriptions

This is a tiny part of a long story about the dynamics of
2+1 dimensional QFT.

Most of it is still unknown...
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