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Integrable Lattice Models

(Part 1 and Il)



integrability: characterized by Yang-Baxter equation
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integrability: characterized by Yang-Baxter equation
with spectral parameters
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integrability as topological invariance?



integrability as topological invariance?
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4d = 2d (topological) + 2d (holomorphic)
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“4d Chern-Simons” by [Costello] ("13)
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“4d Chern-Simons” by [Costello] (*13)
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depends on ‘L/X. X 2



“4d Chern-Simons” by [Costello] (13)
= ﬁg 3Z AT AM)A+g-A As ’19
thz iz 23

A= Aidt + Acdx + Azdz +
o b %

depends on all L.X z 2

“T-dual” to ordinary 3d Chern-Simons
[Vafa-Y] (to appear)
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Perturbative expansion in h
around isolated classical solution
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statistical lattice from Wilson lines
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Integrable Field Theories

(Part 111 and 1V)



thermodynamic limit

|attice model from
Wilson lines



thermodynamic limit
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thermodynamic limit

2d field theory from surface defects

coupled 4d-2d system






two defects: vertical and horizontal







two defects: chiral and anti-chiral



Why Integrable?

(Part I1ll)



Lax operator (1-form on )
F(z)= An@dw+ Ap(2)dO



Lax operator (1-form on B )
F(z)= Au@)dw+ Ap(2)d0

Flat connection
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Lax operator (1-form on )
Q)= AL@dw+ Ap(2)do

Flat connection

di/z)*ﬁi[ZSAi(Z) < Fwp =0
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infinitely-many conserved charges

W= Te Pee(de) = ep (2 52)
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Lax operator = 4d Wilson line!



Effective 2d Theory

(Part I1ll)



4d-2d system effective 2d system




No 4d zero modes: we have perturbative
expansion around an isolated solution of

equation of motion (e3. A0 0 C%E)

All zero modes comes from 2d surface defects



The interaction comes from exchange of 4d

gauge bosons
Chiyra ] onti - chire |

AW
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The interaction comes from exchange of 4d

gauge bosons
Chiyra ] onti - chire |
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only this diagram on the left contributes at

tree-level na.,,,e//v @( "Jiﬁ— )



For example, no such diagram:

chiral antf ~ Chipa |

Ao Aw
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no Aw Az AT vertex
wnw C S



Let's now compute this diagram



The computation is the same as in the
computation of leading-order term of
R-matrix in Part |
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The computation is the same as in the
computation of leading-order term of
R-matrix in Part |

ect
) Z2 F:\:,) HQL ﬂ?l

\/\/V\/\/\/\/\/\/\/\/\/\/\/VM\M“@

Q\assiaat‘ R~ MatriX

V= matnx Rk(z| - 2Z2)
Ri @)= Id + 4 1)+ o0)



We thus have the classical r-matrix

R, (=)= Ta+4 ¥ () + &)



We obtained the effective 2d theory:
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Similarly, we can compute Lax matrix for the
effective 2d theory:

Py= Aw(zy do + Ag (2)dwo
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For the rational case ( = C(l/ we have
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and we reproduce the standard formula
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Examples and Generalizations



Simple example: chiral/anti-chiral free fermions
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Reproduce Gross-Neveu and Thirring models

F
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The framework generalizes in several directions:

1. trigonometric/elliptic cases
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2. more general defects

e.g. curved beta-gamma system

Lisgor = B 108

from which we obtain sigma models

Also non-chiral defects, e.g. free boson 525

OchzﬂOec;} = DAC)’DACF



3. multiple defects
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Quantum Integrability

(Part 1V)



Let’'s assume for now that anomalies
cancel for the coupled 4d-2d system



Recall: Lax operator = 4d Wilson line
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instead of [R~ S
Jetc concider P
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RTT relation: definition of the Yangian
(and their trigonometric/elliptic counterparts),
and ensures quantum integrability



R / R 7‘(2’)

This can be thought of the “continuum limit” of
the RTT relation for discrete lattice models,
discussed in Part ||



Our 4d framework says more, about e.g.
® | ocal conserved charges
® Renormalization group flow Port 1/

® S-matrix factorization

® Higher genus spectral curves > Part IT
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