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What is the “simplest”
interacting 4d N=2 SCFT?

A) Argyres-Douglas theory (very likely)



Argyres-Douglas theory

+ Theory describing a special point in the Coulomb branch of N=2
SU(3) SYM or N=2 SU(2) SQCD.
[Argyres-Douglas 95] [Argyres-Plesser-Seiberg-Witten 95]

» At this special point, mutually non-local electromagnetically charged
particles become massless.

» It is a strongly-coupled N=2 SCFT with no tunable coupling.
Commonly referred to as a “non=-Lagrangian theory”

* Many generalizations. [Cecotti-Neitzke-Vafa 10][Cecotti-del Zotto 12][Xie 12]...

* lts Coulomb phase is well-understood, but the conformal phase is
less-understood. [Cornagliotto, Lemos, Liendo 17][Talk by Lemos]




Properties of the
Ho Argyres-Douglas theory

* There is a chiral operator of dimension 6/5
parametrizing the Coulomb branch.

43 E [Aharony-Tachikawa 07]

¢ Central ChargeS: ad = 120 ¢ = 30 [Shapere-Tachikawa 08]

* The central charge c above is the minimal value of any
interacting N=2 SCFT! [Liendo-Ramirez-Seo 15]
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 The 2d chiral algebra corresponding to the AD theory is
given by a non-unitary Virasoro minimal model.

[Beem-Lemos-Liendo-Rastelli-van Rees |3]
[Cordova-Shao |5]



s it possible to write a Lagrangian
for the ‘'simplest 4d N=2 SCFT"?

» Mutually non-local particles.
Challenges: , . . .
» Chiral operators of fractional dimensions.

A) Sacrifice manifest (super)symmetry



N=1 gauge theory flowing
to the Ho=(AI,A2) SCFT

[Maruyoshi-)S 16]

g q M X

Matter content
SU(2)| 2 2 adj 1 1

Superpotential W = éqq + Moq'q + X ¢*

This theory has an anomaly free U(l) global symmetry that can be
mixed with R-symmetry. R-charges fixed by a-maximization.

[Intriligator-Wecht 03]



RG Flow to the Ho theory

[Maruyoshi-]JS][Maruyoshi-Nardoni-|S]

W = gpqq + g Mpq'q’ + 1Xp*
g

0
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@C, we get: a

Agrees with that of the Argyres-Douglas theory!



N=1I gauge theory flowing to
the Hi=(A\|,A3) theory

/

- Matter contents: q q M

sU(2) 2 2 adj 1

* Interaction: W = Mqq' + X ¢*

This theory has SU(2)xU( 1) flavor symmetry.
The U(l) symmetry can be mixed with R-symmetry.

11 1 4

@IR, we get: a= 5>



Checks & applications of the
N=1I Lagrangian for the AD theory

- Moduli space, chiral ring agree with the known results.

* The full superconformal index of the AD theory. Can be
compared against the Schur/Macdonald limits of the
index computed In [Cordova-Shao][Buican-Nishinaka][]JS]

* 3d Argyres-Douglas theory: 3d N=2—-N=4 [Benvenuti-Giacomelli]

* More SUSY partition functions for the AD theory
[Fredrickson-Pei-Yan-Ye][Gukov][Fluder-)S]



Where are these ‘Lagrangians’
coming from!
Is there any organizing principle!



N=| Deformations of N=2
SCFT with global symmetry

. Consider N=2 SCFT Tuv with non-abelian global symmetry F.
* |t has a moment map operator U valued in the adjoint of F.

» Add a chiral multiplet M in the adjoint of F and the following
superpotential:

W = Tr(M )

» SU2)xU(1) R-symmetry broken to U(l)rxU(1)a



N=| Deformation via
Nilpotent Higgsing

[Gadde-Maruyoshi-Tachikawa-Yan]

- Now, we give a nilpotent vev to M. [Agarwal-Bah-Maruyoshi-|S]

[Agarwal-Intriligator-)S]

* The deformation triggers a flow to a new N=1 SCFT.

Tov ~ Trr|Tuv, Pl

* Nilpotent elements are classified by the SU(2) embeddings

p:SU(Q2) = . M) = p(oH)

» |t preserves the U(l)a symmetry that can be mixed with R-

O @)

symmetry.
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Results

[Maruyoshi-JS][Agarwal-Maruyoshi-JS]

* For a number of cases, Supersymmetry enhances

to N=2 at the fixed point.
- N=1 RG flows between (known) N=2 SCFTs

* N=I deformed Lagrangian N=2 SQCD flows to the
“non-Lagrangian” Argyres-Douglas (AD) theory!

N=| SUSY

N=2 SU




Deforming SU(N) N=2N: F=SU(2N)

SU(2N) | p: SU(2) — SU(2N) a c 4d N =2 SUSY
[14] = z Yes; N. =2, Ny =4
SU (4) 3,1] 5 2 Yes; (A1, Dy) AD th.
[4] o 5 Yes; (A1, A3) AD th.
[16] = u Yes; No =3, Ny =6
SU(6) [5,1] o z Yes; (A1, Dg) AD th.
(6] o o Yes; (A1, As) AD th.
[18] B 31 Yes; N. =4, Ny =38
[2,1°] e Bl ?
SU(8) [4,4 3858 1941 !
[7,1] = i Yes; (A1, Dg) AD th.
8] o o Yes; (A1, A7) AD th.
[119] o . Yes; N. =5, Ny =10
SU(10) 5,3, 17 2001712 | 12200856 ’
[9,1] = = Yes; (A1, D1g) AD th.
[10] N = Yes; (A1, Ag) AD th.
[112] 2 i Yes; No =6, Ny =12
[43] Igéggéll 46294179227 !
SU(12)
[11,1] 3 8 Yes; (A1, Di2) AD th.
[12] % n Yes; (A1, A11) AD th.

Here we list some of
the deformations that
gives rational central
charges.

Those with “?" have
N=1| SUSY. [Evtikhiev]

Other deformations
give irrational central
charges, therefore they
flow to N=I theories.



Deforming Sp(N),N=2N+2: F=SO(4N+4)

SO(4N +4) | p: SU(2) — SO(4N + 4) a c 4d N =2 SUSY
18] - g Yes; No=1, Ny =8
32,12] - ; Yes; (A1, Dy) AD th.
SO(8) [4,4] = [5,1%] . ! Yes; (A1, D3) AD th.
6349 3523
5, 3] 13872 6936 !
7, 1] _ - Yes; (A1, Az) AD th.
[112] e 3 Yes; N. =2, Ny =12
2 92 105027 61145
50(12) [4 72 ] 59536 29768 !
(9, 1°] W 1 Yes; (A1, Ds) AD th.
[11,1] . - Yes; (Ay, Ag) AD th.
[116] % - Yes; N. =3, Ny =16
5,11] o | L :
) 2 2 °
3 12 18250741 10440877
SO(l6> [57 3 71 ] 5195568 2597784 !
[13,17] > - Yes; (A1, D7) AD th.
[15,1] 2 " Yes; (A1, Ag) AD th.
[120] v o Yes; No =4, Ny =20
SO(20) 22,119] - - ?
4 94 29 133
3%, 2] = 5E ?




Deforming SO(N) N=N-2: F=Sp(N-2)

Sp(N —2) | p:SU(2) — Sp(N — 2) a c 4d N =2 SUSY
Sp(2) 1] 5 5 Yes; N, =4, Ny =4
2,1 056 3558 ?
Sp(3) [1°] 21 5 Yes; N, =5, Nj =6
[4,17] 5 34l ?
Sp(4) [1°] 3 2 Yes; N =6, Ny =8
5p(5) [119) 35 T | Yes; No =7, Ny =10
[1%7] 4 26| Yes; N.=8, Ny=12
Sp(6) 2,17 50685 ot ?
4,17 15 115 ?
1] . 5 | Yes; N,=9, Ny =14
(7 )| e | :
6,3%,2] Tt | et !
[11°] 305 85 | Yes; N, = 10, Ny = 16
42,22 11 389 23 ?
Sp(8) [ [52 32] ] 30532927 167365805 2
’ 4642608 2321304 :
[ 52’ 47 12] 248314188894085 3584238690169 ?

No non-trivial
N=2 fixed point!



Is there any pattern in
the SUSY enhancement!?



Chiral Algebra associated to Tuy

[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]

Tov — x2d|Tuv)

* For any 4d N=2 SCFT, there is a subsector described by

a chiral algebra with
1

Coq = —12¢yq, Foq = _§k4d -

» If the chiral algebra is given by the affine Kac-Moody
algebra F the stress tensor is given by the Sugawara
tensor with the central charge

 kyydimF

Cq —
ugawara kzd gAY




When does SUSY enhances!?

[Agarwal-Maruyoshi-|S][Agarwal-Sciarappa-JS]
[Giacomelli]

Tov ~ Trr|Tuv, Pl

By studying a large set of Lagrangian/non-Lagrangian theories, we observe
that the SUSY is enhanced in the IR if and only if

. Tuv satisfies czd[’f UV]= Csugawara(+n) & F is of ADE type (can have U(I)’s)

* Either of the two cases:

|. p is the principal embedding.

2. p is the ‘next to principal’ and Tuy saturates the flavor central
charge bound. kr = kgp [BLLPRvR][Lemos-Liendo]

WHY?



What about the minimal
4d N=1| SCFT?



Minimal 4d N=1| SCFT?

* There is no analytic bound on the value of a or c.

* There is a candidate minimal SCFT suggested by
conformal bootstrap with ¢c~0.1|. But no explicit
construction of such theory. [Poland-Stergiou][Li-Meltzer-Stergioul]

* We explored a large set of SCFTs with Lagrangian
descriptions by considering a simple setup.

+ SU(2) adjoint SQCD with Ni=| + gauge singlets with all
possible superpotential couplings



A Landscape of Simple SCFTs

[Maruyoshi-Nardoni-JS]

* We found 35 fixed points
having small central

C

; charges.
0.60¢
05| | . Th ber of

| . ¢ ey pass a humber o
0.50} Lo consistency checks:
0.45] ' central charge bounds,
0.40} . unitarity constraints, index
038P~ ] o

0.35 0.40 0.45 0.50 » alc lie in a narrow range

with mean value and std

0.8733 £ 0.0398



Some examples

(a,c) = (0.453,0.499)

Ho" has the smallest value of a.
[Xie-Yonekura][Buican-Nishinaka]

Toand H/* have the smallest a
with U(I) and SU(2) flavor.

(0.345,0.349) | T

To has the smallest value of . M;Dgg
[Benvenuti] l

Tm contains ‘unphysical’ operator (4. 1) | H,

that is not in the chiral ring. 2

s it really ‘bad’ or just ‘ugly’? l
Can it be a new “minimal” theory!?

(263 271) }JS
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Summary



Summary

. To a given N=2 SCFT Tuv with non-abelian global symmetry F,

one can obtain N=1 SCFT Tr[Tuv ,p] labelled by SU(2)
embedding p of F.

Tov ~ Tir|Tov, p

+ For some special cases, Tir have enhanced N=2 SUSY.

- N=I Lagrangian theories flowing to the N=2 Argyres-Douglas
theories can be realized in this way.

» Many new “simple N=| SCFTs” with small central charges can
be constructed from a simple gauge theory setup.



Outlook

* When and why SUSY enhancement happens!?
+ Other ‘non-Lagrangian’ theories? general ADs, Tn, N=3
cf) Ee, E7, Ro,N SCFT [Gadde-Razamat-Willett][Agarwal-Maruyoshi-|S]

. SUSY enhancements in other d?  [&aiotto-Romargodski-Wul
) [Benini-Benvenuti][Gang-Yamazaki]

* What is the minimal N=1| SCFT?



Thank you!



