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@ Introduction



Conformal Blocks and Crossing Symmetry
e Conformal block expansion
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e Conformal blocks fixed by symmetry
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Information in the crossing equations

e Algorithm to place bounds on Ap's and fgeo's: [Rattazzi, Rychkov,
Tonni, Vichi '08]

e Numerical investigations over past decade: crossing-unitarity is
surprisingly powerful
o Example: 3d Ising model figure from [Kos, Poland, DSD, Vichi '16]
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Challenges

Achieve similar precision for other CFTs
Map the space of CFTs

Explain numerical results analytically, go beyond?

Tom's talk: crossing+unitarity encodes ANEC/conformal collider
bounds/causality. What else?

What can we learn about AdS/CFT?



Lorentzian Inversion Formula

e Unifies many analytic bootstrap studies

e New conceptual ideas (analyticity in spin)

This talk:

e Use LIF to explore some physics of the crossing equation
e Use LIF as a lens to understand some recent works

e Discuss analyticity in spin



Harmonic Analysis
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Recover conformal block expansion by deforming A contour
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Lorentzian Inversion formula

C(A,J) = KAJJ/O /o dzdzp(z,2)G yra-1,a-a+1(2, %)
X ([p(z4), ¢(21)][p(22), d(23)])
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Simplifies large-spin perturbation theory

dDisc[g] can be much simpler than g
dDisc[g] is positive ( => ANEC-+more, see Tom’s talk)

Analyticity in spin
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@ Large-spin perturbation theory



Large-spin perturbation theory

e Even in a nonperturbative theory, 1/.J is a good expansion parameter
e Dynamics purely from crossing symmetry

e Explains much of the numerical data for 3d Ising (103/112 “stable”
operators) [Alday, Zhiboedov '15] [DSD '16]

Tlmrlu(ﬁ)
-
1.04

1.03
1.02
1.01

1.00

10 20 30 40



How to succeed at large-spin perturbation theory without
really trying
e Set J large in the inversion formula!
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o Correct! At large-spin, we have “double-twist” operators
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Corrections at large spin

e Include another t-channel block Gas j/(1 — 2,1 — 2):
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C(A,J)D

e Gives double-twist anomalous dimensions
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Agrees with all-orders asymptotic expansions in 1/J

e Cartoon:



Away from large J7

p(J)y(J) + A5P(J)

Problem: every t-channel operator O’ gives (A—T—2K,) —I-A;
(poles of 65 symbol/crossing kernel for SO(d 4+ 1, 1)

Correct answer
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Need multi-twist operators [O102 - Oy, ,...J
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e Inversion integral is only guaranteed to work on principal series
A= % + is. To move into physical region, need to (at least) resum
multi-twists.

e Organizing spectrum is difficult. Small parameters can help.
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Small parameters and the simplicity of dDisc: large N

Consider a large-N theory:

(6690) = (B0} (96) + 7zl + 33 (D 4

Apsgln, =20¢ +2n+J +7P (0, J) + 7P (n, J) + ...

dDisc[Ga.7(1 — 2,1 — %)] = sin? (g(A —J- 2A¢)) Gay(l—21-7%)

e At O(N~2), only single-trace operators contribute to dDisc!
= tree-level double-trace data v(!)(n,.J) from single-trace data.

e At O(N~%), double-traces contribute as v(!)(n, .J)?
= 1-loop double-trace data () (n,.J) from (tree-level)?.

Interpretation: g =1+ iM. Disc[g] = M. dDisc[g] = Im(M).



Loops in the bulk from CFT!

=2 x
single
traces

=5 X
single
traces

e Scalar triangle diagram in AdS using large-spin perturbation theory,
squaring tree-level results

e Bulk loop corrections in A/ = 4 SYM at strong coupling
(using tree-level
data from )

e CFT version of unitarity-cut methods from amplitudes. Can
higher-loop techniques be adapted too?



Small parameters and the simplicity of dDisc

e Wilson Fisher theory in 4 — € dimensions: only dDisc[G, G 2] are
nonzero at O(e3).

o Fixes anomalous dimensions 744 (/) up to O(€®) from a single
application of the inversion formula.
e Explains some success of Mellin bootstrap for Wilson-Fisher

e To get O(e*), another amplitudes technique: transcendentality

z—1
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e Other theories with small parameters

e In 3d Ising, v[50), < 0.036 are numerically small. Allows one to
resum their effects
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The OPE in Lorentzian signature

Consider a CFT correlation function (O ---O,,)

e Euclidean signature: all singularities described by the OPE

O1(21)O2(x2) ZflzkIA" Ar= 220 (2)
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e Lorentzian signature: the OPE is valid when both operators act on
the vacuum
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But it's easy to find situations where 2%, — 0 and the O; x O
OPE doesn't work



The Regge limit

e Position-space version of high-energy scattering. Operators 1 and 2
are highly-boosted relative to 3 and 4.

o (01, O3 create excitations that scatter, measured by O3, Oy.
e 12, — 0 but the O; x Oy OPE is not valid

(QT{010:050,}|Q) = (2]0,0:0,05]Q)



Analyticity in spin: toy model

Consider an “amplitude” A(w) = A(e'’) such that

e Ais bounded in the "Regge limit" w — oo
A(w) Sw’ as w — oo

o A is analytic outside of w € [1,00)
e A has partial wave decomposition A(w) = Y7 a(J)w’

a(J) = j{ 2d1{} w™! A(w) “Euclidean inversion”
Tiw
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Analyticity in spin
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Can now write the amplitude in a way that manifests Regge behavior
(Sommerfeld-Watson trick)
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Conformal Regge Theory

e In Regge regime Ga.; — Gi1_j1-a ~ (2%) = . Big at big J.
e Sommerfeld-Watson in CFT gives

\Booe) ~ ?{djj{ omi 1 — e—2mJ (Gigi-alxi) +...)

e Many applications (see Tom'’s talk)

e Caron-Huot's formula justifies conformal Regge theory in a general
CFT. Derive it by deforming the Euclidean inversion contour to
Lorentzian space , like in our toy
model. Boundedness from

e Similar story for chaos in 1d and 2d



Light-ray operators

What does non-integer spin actually mean?

e We can't analytically continue a local operator O*1""'F7 in spin.
Continuous spin operators kill the vacuum, local operators do not
(Edward's talk).

e Instead consider the integral over a null line

L[O,] = / de=O__.._(z7) “light-transform”
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e L[O,] can be analytically continued in J = light-ray operator O
e Construct Oy as a bilocal integral
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Generalized inversion formula

e ResaC(A,J) is a matrix element of O
e Gives a new proof/generalization of Caron-Huot's formula.

1 dixy - dizy
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e Setting J = 2, Resa=q gives ANEC from positivity of ([, O], O))
e Other residues give all other OPE data

e The Regge limit is an expansion in light-ray operators.
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e The Reggeon/Pomeron are (families of) light-ray operators



A Riemann surface of CFT operators
Chew-Frautschi plOt [Brower, Polchinski, Strassler, Tan '06]
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Other developments

o More sophisticated numerical studies. (JJJ.J) in 3d
, (TTTT) in 3d
. Many interesting supersymmetric computations
(Madalena’s talk).

e To isolate theories and improve precision, need larger-scale problems
with multiple correlators. Better algorithms, bigger machines?

e Analytic bootstrap bounds , using algorithm
of analytically. Currently in 1d. Promising
direction, perhaps for numerical/analytical hybrid?



Bootstrap in new settings

e Defects [Gaiotto, Paulos, Mazac, Lemos, Liendo, Meineri, Sarkar, Meneghelli, Mitev,
Lauria, Trevisani, Gadde, Isachenkov, Linke, Schomerus, ...]

o Finite temperature [lliesiu, Kologlu, Mahajan, Perlmutter, DSD '18] [Gobeil, Maloney,
Ng, Wu '18]

° Large charge [Hellerman, Kobayashi, Maeda, Watanabe, Monin, Pirtskhalava, Rattazzi,
Seibold, Jafferis, Mukhametzhanov, Zhiboedov, ...]

In defect and finite-temperature cases, one can derive Lorentzian
inversion formulas with many of the nice properties we've discussed.



Questions

e Can we solve the complete large-spin dynamics of a CFT (and
isolate what's left over)?

e Can we input large-spin perturbation theory into numerics?
e Can we iterate the inversion formula?
e Can we compute higher loops in the bulk?

e What other operators exist besides light-ray/local operators? What
physics do they encode? Can we describe the bulk-point limit?

e Connections between analyticity in spin and information theory?
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