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Three Large N Limits 

• O(N) Vector: solvable because the bubble 
diagrams can be summed. 

• Matrix (‘t Hooft) Limit: planar diagrams. 
Solvable only in special cases. 

• Tensor of rank three and higher. When 
interactions are specially chosen, dominated 
by the melonic (ladder) diagrams. Bonzom, Gurau, 

Riello, Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky 



O(N) x O(N) Matrix Model 

• Theory of  real matrices fab with distinguishable 
indices, i.e. in the bi-fundamental 
representation of O(N)axO(N)b symmetry.  

• The interaction is at least quartic: g tr ffTffT  

• Propagators are represented by colored double 
lines, and the interaction vertex is 

• In d=0 or 1 special limits describe two-
dimensional quantum gravity. 

 



• In the large N limit 
where gN is held fixed 
we find planar Feynman 
graphs, and each index 
loop may be red or 
green. 

• The dual graphs shown 
in black may be thought 
of as random surfaces 
tiled with squares whose 
vertices have alternating  
colors (red, green, red, 
green). 
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• For a 3-tensor with distinguishable indices the 
propagator has index structure 

 

• It may be represented graphically by 3 colored 
wires  

• Tetrahedral interaction with 
O(N)axO(N)bxO(N)c symmetry                        
Carrozza, Tanasa; IK, Tarnopolsky 

From Bi- to Tri-Fundamentals 



• Leading correction to the propagator has 3 
index loops 

 

 

 

• Requiring that this “melon” insertion is of 
order 1 means that                         must be held 
fixed in the large N limit.   

• Melonic graphs obtained by iterating    



Cables and Wires 
• The Feynman graphs of the quartic field 

theory may be resolved in terms of the 
colored wires (triple lines) 



• Most Feynman graphs in the quartic field theory 
are not melonic are therefore subdominant in the 
new large N limit, e.g. 

 

 

 

 

 

• Scales as 

• None of the graphs with an odd number of 
vertices are melonic. 

 

 

 

Non-Melonic Graphs 



The Sachdev-Ye-Kitaev Model 
• Quantum mechanics of a large number NSYK of  

   anti-commuting variables with action 

      

 

• Random couplings j  have a Gaussian 
distribution with zero mean.  

• The model flows to strong coupling and 
becomes nearly conformal.  Georges, Parcollet, Sachdev; 

Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; 
… 

 

 



• Spectrum for a single realization of NSYK=32 
model with q=4. Maldacena, Stanford 

• No exact degeneracies, but the gaps are 
exponentially small. Large low T entropy. 



SYK-Like Tensor Quantum Mechanics 

• E. Witten, “An SYK-Like Model Without 
Disorder,” arXiv: 1610.09758. Has 4N3 fermions. 

• Appeared on the evening of Halloween: 
October 31, 2016. 

 

 

 

• It is sometimes tempting to change the term 
“melon diagrams” to “pumpkin diagrams.” 



• A pruned version: there are N3 Majorana 
fermions IK, Tarnopolsky 

 

 

 

• Has O(N)axO(N)bxO(N)c symmetry under 

 

• The SO(N) symmetry charges are 

 

 

 

 

 

 

The O(N)3 Model 



• The 3-tensors may be 
associated with 
indistinguishable vertices 
of a tetrahedron.  

 

• This is equivalent to 

 

 

• The 3-line Feynman 
graphs are produced 
using the propagator 
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Schwinger-Dyson Equations 

• Some are the same as in the SYK model Kitaev,; 

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon 

 

 

 

 

 

• Neglecting the left-hand side in IR we find 

. . . . . .



• Four point function 

 

 

 

 

 

•  If we denote by       the ladder with n rungs 
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Spectrum of two-particle operators 
• S-D equation for the three-point function Gross, 

Rosenhaus 

 

 

 

 
 

 

• Scaling dimensions of operators   

 

 

 



• The first solution is h=2; dual to gravity. 

 

 

 

 

 

 

 

• The higher scaling dimensions are 

       approaching              



Gauge Invariant Operators 

• Bilinear operators related by the EOM to some 
of the higher particle “single-sum” operators.  

 

 

• All the 6-particle  

   operators vanish by  

   the Fermi statistics in  

   the theory of one  

   Majorana tensor 

 

 

 

 

 



• The bubbles come from O(N) charges and 
vanish in the gauged model: 

 

• The 17 single-sum 8-particle operators which 
do not include bubble insertions are  

 



Factorial Growth 

• There are 24 bubble-free 10-particle; 617 12-
particle; 4887 14-particle; 82466 16-particle 
operators; etc.  

• The number of (2k)-particle operators grows 
asymptotically as k! 2k. Bulycheva, IK, Milekhin, Tarnopolsky 

• The Hagedorn temperature of the large N 
theory vanishes as 1/log N. 

• The tensor models seem to lie “beyond string 
theory.” 

• Are they related to M-theory? 



Spectra of Energy Eigenstates 
• Generalize the Majorana tensor model to have 

                                                symmetry 

• The traceless Hamiltonian is 

 

 

 

• The Hilbert space has dimension 

• Eigenstates of H form irreducible 
representations of the symmetry.  
 

 

 

 

 



Complete Diagonalizations 

• Generally possible only for small ranks. Krishnan, 

Pavan Kumar, Sanyal, Bala Subramanian, Rosa; Chaudhuri et al.; IK, Roberts, 
Stanford, Tarnopolsky 

• For example IK, Milekhin, Popov, Tarnopolsky  



• Spectra for N3=2 

• For the O(2)3 model 

   only two singlets at  

   energies -2g and 2g.  



Energy Bounds 

• The bound on the singlet ground state energy 
IK, Milekhin, Popov, Tarnopolsky 

 

• In the melonic limit, this correctly scales as N3. 

• The gap to the lowest non-singlet state scales 
as 1/N. 

• For unequal ranks the bound is 



A Fermionic Matrix Model 

• For N3=2 the bound simplifies to 

 

 

• Saturated by the ground state. 

• This is a fermionic matrix model with symmetry  

 

 



Gauge Singlets 

• To eliminate large degeneracies, focus on the 
states invariant under    

• Their number can be found by gauging the 
free theory  



Singlets in the Matrix Model 

• Their number grows slowly. For N1=N2=10 only 
24 singlets out of 2100 states. 



Gauge Singlets in the O(N)3 Model 

• Their number vanishes for odd N due to a QM 
anomaly for odd numbers of flavors. 

• Grows very rapidly for even N 

 

 

 

 

 

• The large low-temperature entropy suggests 
tiny gaps for singlet excitations ~  

 

 

 

 

 

 

 

 

 

 



Spectrum of the Gauged N=4 Model 

• Work in progress on this system of 32 qubits with 
K. Pakrouski, F. Popov and G. Tarnopolsky.  

• Need to isolate the 36 states invariant under 
SO(4)3 out of the 601080390 “half-filled” states 
(those with 16 ones and 16 zeros). 

• Diagonalize 4H/g + 100 C where C is the sum of 
three Casimir operators. 

• A Lanczos type algorithm is well suited for this 
sparse operator. 

• Find 15 distinct SO(4)3 invariant energy levels: 
E=0 and 7 “mirror pairs” (E, -E). 

 

 



Discrete Symmetries 

• Act within the SO(N)3 invariant sector and can 
lead to small degeneracies. 

• Z2 parity transformation within each group like 

 

• Interchanges of the groups flip the energy 

 

 

 

• Z3 symmetry generated by                    , 



Preliminary Numerical Results 

• The maximum degeneracy at non-zero energy is 3. 

• The lowest singlet state is non-degenerate and has 
E0=- 40.035 g.  

• This is likely the ground state of H.  

• It is not far from our lower bound -41.569 g 

• The next SO(4)3 invariant states are at -24.255 g; 
they have degeneracy 3. 

• The highest degeneracy is at E=0. 

 



Unstable Bosonic Tensor Model  
• Action with a potential that is not positive 

definite IK, Tarnopolsky; Giombi, IK, Tarnopolsky 

 

 

• Schwinger-Dyson equation for 2pt function 
Patashinsky, Pokrovsky 

 

 

• Has solution 



Spectrum of two-particle spin zero 
operators 

• Schwinger-Dyson equation 

 

 

 

 

 

 

• In d<4 the first solution is complex  



Complex Fixed Point in 4-e Dimensions 

• The tetrahedron operator  

 

mixes with the pillow and double-sum operators 

 

 

 

• The renormalizable action is 



• The large N scaling is 

 

 

• The 2-loop beta functions and fixed points:  

 

 

 

 

• The scaling dimension of                  is 



Stable Bosonic Model in 2.9 Dimensions 

• Work in progress with S. Giombi, F. Popov, S. 
Prakash and G. Tarnopolsky on the theory 
dominated by the positive  “prism” interaction 

 

 

• To obtain the large N solution                             
it is convenient to rewrite  

 

 

 



• Tensor counterpart of a bosonic SYK-like model. 

    Murugan, Stanford, Witten 

• The IR solution in general dimension: 

 

 

 

 

• In 

 

 

• For d=2.9 find numerically 



 
• Graphical solution  for dimensions of bilinear 

operators in d=2.9 
 
 
 
 
 
 
 

• The first root is 
 
 

• For d<2.8056,             becomes complex. 



Renormalized Perturbation Theory 

• For 2.8056 < d <3 the large N theory is stable. 

• To make the theory renormalizable in d=3 
need to add 7 more O(N)3 invariant terms. 

• The 8 coupled beta functions have a non-
trivial real fixed point.  

• The resulting epsilon expansions agree in the 
large N limit with the solutions of the 
Schwinger-Dyson equations.  



Conclusions 

• The vector and matrix large N limits have been 
used extensively for many years in various 
theoretical physics problems.  

• The tensor large N limits for rank 3 and higher 
are relatively new.   

• The O(N)3 fermionic tensor quantum 
mechanics seems to be the closest 
counterpart of the basic SYK model for 
Majorana fermions. Yet, there are some 
differences between the two. 

 



• Gauging the SO(N)3 symmetry leaves 
interesting spectra of operators and 
eigenstates.  

• Energy gaps should become very small already 
for N=6.  

• Higher dimensional generalizations are 
possible, e.g. a stable sextic scalar theory in 
2.8056 < d < 3, which is solvable in the  large N  
limit. 

• In 3-e dimensions it may be studied for finite 
N using standard perturbation theory. 


