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Modular flow

Consider a bi-partite quantum system:

W) € H=HsRH;
Observations restricted to (O 4 described by pA

Assuming pPA is invertible, define Modular flow:

—18

Oa(s) = piOapy

Why? in some situations — In p4 ~ Hamiltonian, e.g. a
thermal/Gibbs state



Obscure ...

e Still seems like an obscure operation ... maximally mixed
state”?

e We will study it for several reasons:

* Universality in QFT ~ like a boost generator close to
the entangling surface for any state

e Satisfies powerful constraints - analyticity and
unitarity

* For AdS/CFT ~ tool for revealing bulk locality and
causality from the boundary
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In QFT

e Consider a geometric partition:

@,

e Not really a tensor factorization Sgprp = oc

e Rather think about algebra of operators in spacetime
regions:

DA)



In QFT

e Modular flow still well defined, associated to some |1)
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In QFT

e Modular flow still well defined, associated to some |1)

Modular operator: A (= pa @ p;) (Tomita- Takesaki
Oa(s) = AKOAAL"™ in D(A)
4 1) = 1)
Modular conjugation: .J
O = JO4J in D(A)
Jalv) = |v)
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In Q F I (Bisognano-Wichmann)

 For example for a half space cut (Rindler):
Ais

J = CPT

Boost

O
Important relation:
JAY204 1) = O 9)
7T Euclidean Rotation
* For more general states, UV structure of entanglement is
the same near the cut. So expect modular flow has

universal geometric description at least acting on
operators close to the cut ....
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Powerful constraints ...

* Analyticity of correlation functions: (1) OAAiSOfLX 1))

= (Y| 040, (s) |¥)
ﬂ \

Analytic y B =1

e Unitarity. e.g bounds:

(W] OAAV2ON [y = (] 020 [1) > 0

etc.
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Constraints on Emergence
of gravity in AdS/CFT?

Modular flow in AdS/CFT ~ boosts near the Ryu-
Takayanagi surface

Bulk locality likely necessary ingredient
Look for signatures of such emergence

Put constraints on emergence



In AdS/CFT ...

e We start with the holographic entanglement entropy
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In AdS/CFT ...

e We start with the holographic entanglement entropy
formula (RT/HRT/LM):

A
( ) A(ma)

p SEE = Ten
™ A

e Various improvements lead to the JLMS result:

Modular flow for region A
ACFT L Abulk dual to flow in the bulk for region a
A — —a

Entanglement wedge: ga — D(CL)



Heavy probe operators

* Jo get some handle on this we will study correlation
functions of heavy probe operators. These are usually
determined by spacelike geodesics:



Heavy probe operators

* Jo get some handle on this we will study correlation

functions of heavy probe operators. These are usually
determined by spacelike geodesics:

* |n the presence of modular flow expect still semiclassical
answer:

(O(x)A™O(y)) ~ e ™2v)77



Rules for geodesics
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Rules for geodesics

(TF, Li, Wang) See also: (Chen, Dong, Lewkowycz,Qi )
We give some rules for when such correlators can be

computed: |
(0@)A"0()) @

O(z) .4 i

Consider two geodesics meeting at 7 4 such that their
tangents are related by a local boost about m 4 with

rapidity 27s
= exp(—m/ — ml
= At exp(—ml(z,§) —ml(y,§))
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Rules for geodesics

Not always true! So we have not “solved” modular flow ...
Minimize over meeting point ¢ calculate s(z,y)

So co-dimension one slice of parameter space:

eg. 1%,Y,5 = s(z,y)}

We will also need for linear deformations thereof:

v

\/ﬂ\ exp(—m(£(z, &) + £(y, &) + 6))



Some intuition:

* Following Jafferis, Suh L |s) = Pfaf V) = Pff )

Using “boost invariance”: A [v) = pa ®p;' |[¥) = [¥)

(05| O(2)O(y) |vs) = (¥ O(x) A" O(y) [¢)
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Some intuition:

 Following Jafferis, Suh ) = p% ) = P )
Using “boost invariance”: A [v) = pa ®p;' |[¥) = [¥)
(15| O(2)O(y) |1hs) = (] O(x)A* O(y) [)

* In this state, observables restricted to D(A) or D( [1)
unaffected: Entanglement wedges unaffected!!

9s

Also: replica trick argument
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Mirrors for mirror ops

e Complex boosts: Euclidean rotations - 7 rotation: mirror!

(0(@)A20(y) ) = (0(2)0, ()

S

K?/ Shadow
£(x)

* Reflected backonitselfso: y == Q

e Use to map out RT surface: &(x)



Nested flows

e We can use these rules for more complicated correlators:
1S —18

O(saB) = pPipg" " Opir,
D(B) C D(A)

Y

 As long as we can thread the geodesic through -
satisfying the boost conditions at each RT surface



Nested flows

e We would like to combine these two ideas (mirrors and
double flow) to compute:

mirror
double flow

A

(0@)aEAT20(w))




Nested flows

e We would like to combine these two ideas (mirrors and
double flow) to compute:

mirror
double flow

A

' N

(O@)AFA 2 0())

e Some intuition: double flow in the Rindler case gives
action of two boosts = translation. More generally acting
on the geodesic correlator we will be able to extract
properties of this translation deep in the bulk at:

f(x) & ma



Nested boosts

e Still hard to satisfy the boost condition while varying s

O@z) b

=




Nested boosts

e Still hard to satisfy the boost condition while varying s

O@z) b

=

B LA Note that when:
A=21HB
— (O@)A{*0())
§(x)

e For small deformations A — B, reflected geodesics come
close enough to use the rules to linear order in the deformation



Nested boosts

e Consider:

iM41 = (0agas"0)

J(oal?0) (oay0)




Nested boosts

(somewhere deep
in the bulk)

* Consider: | <(9A§A;i3+1/20> . Yz—(g)
1M + 1 = mp )
OAPO) (0A?0 "
(oaio) (oayo) Vi
e Which we calculated using the rules: E(x)

M = 7:627T(8—S*)5Z—|— (g) 4 ie—QW(S—S*)5Z—<€)



Nested boosts

(somewhere deep

in the bulk)
e Consider: <ONBSA2¢3+1/QO> . vQz‘(f)
ZM —+ 1 = mp )
OAPO) (0A?0 "
(oaio) (oaio) i
e Which we calculated using the rules: E(x)

M = ie?™73) 51 (€) + je 25 527 (&)

* For nested regions, can show that in the “thermal” strip:

—lglmsg1 : ImM > 0
4 4

02=(§) 2 0




Nested boosts

(somewhere deep

in the bulk)
e Consider: <ONBSA2¢3+1/QO> . vQz‘(f)
ZM —+ 1 = mp )
OAPO) (0A?0 "
(oaio) (oaio) i
e Which we calculated using the rules: E(x)

M = 7:627T(8—S*)5Z—|— (g) 4 ,2:6—271'(8—8*)52,—<€)

saturates chaos bound (T=1)

* For nested regions, can show that in the “thermal” strip:

4 4

0z7(&) > 0
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assuming: classical GR and bulk NEC
(Wall 2012)
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EWN

This is the entanglement wedge nesting property
D(B) C D(A)

(spacelike movement of
gb C Ea the RT surface)

This property can be proven directly in the bulk,
assuming: classical GR and bulk NEC

(Wall 2012)
Here we have a purely boundary argument, based on
analyticity and unitarity

Imposing this condition near the boundary of AdS gives
the QNEC of the boundary CFT

(Leichenhaur, Koeller)



QNEC near boundary

(Bousso, Fisher, Koeller, Leichenauer, Wall)

Ofx) /1
K \ | T4 +) = SeE
7 .
\\\ Metric Shape of
fall off near RT surface
/ /ﬁ(i) bdry of AdS  near bdry

* This connects to a general proof of the QNEC, which used

such a modular flow correlator, but calculated it using other
CFT methods

(Balakrishnan, TF, Khandker, Wang)

e Such methods fail unless O(x) is close to 0B

* To get away from this, we needed to use holographic CFTs



Other things ...

We have only started to use these new tools ...

Can get more information about the bulk:

bulk
hij can we get: K%7T+1-1|- ,...??

What about the bulk NEC? Quantum Focusing Condition?
Einstein’s equations?

Stringy corrections? Non saturation of the chaos bound?
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